Integrated transcriptome sequencing and weighted gene co-expression network analysis reveals key genes of papillary thyroid carcinomas.

Lingfeng Pan, Lianbo Zhang, Jingyao Fu, Keyu Shen, Guang Zhang
Author Information
  1. Lingfeng Pan: Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
  2. Lianbo Zhang: Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
  3. Jingyao Fu: Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
  4. Keyu Shen: Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
  5. Guang Zhang: Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.

Abstract

Objective: Papillary thyroid carcinoma (PTC) accounts for the majority of thyroid cancers and has a high recurrence rate. We aimed to screen key genes involved in PTC to provide novel insights into the mechanisms of PTC.
Methods: Seven microarray datasets of PTC were downloaded from gene expression omnibus database. Differentially expressed genes (DEGs) between PTC and normal samples were screened in the merged dataset. Then, protein-protein interaction (PPIs) functional modules analysis and weighted gene co-expression network analysis (WGCNA) were utilized to identify PTC-associated key genes. The identified key genes were then characterized from various aspects, including gene set enrichment analysis (GSEA) and the associations with immune infiltration, methylation levels and prognosis.
Results: A large numbers of DEGs were identified, and these DEGs are involved in several cancer pathways. Nine key genes (including down-regulated genes GNA14, AVPR1A, and WFS1, and up-regulated genes LAMB3, PLAU, MET, MFGE8, PRSS23, and SERPINA1) were identified. Patients in the AVPR1A and GNA14 high expression groups had better disease-free survival (DFS) than those in the low expression group. Key genes were mainly involved in P53 pathway, estrogen response, apoptosis, glycolysis, NOTCH signaling, epithelial mesenchymal transition, WNT_beta catenin signaling, and inflammatory response. The expression of key genes was associated with immune cell infiltration and corresponding methylation levels. The verification results of key gene proteins and mRNA expression levels using external validation datasets were consistent with our expectations, implying the involvements of key genes in PTC.
Conclusion: The key genes may serve as potential therapeutic targets for PTC. This study provides novel insights into the mechanisms underlying PTC development.

Keywords

References

  1. Biosystems. 2015 Jan;127:67-72 [PMID: 25451770]
  2. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  3. Biomed Res Int. 2020 Apr 01;2020:9710421 [PMID: 32337286]
  4. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  5. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  6. Cancer Cell Int. 2021 Jul 15;21(1):378 [PMID: 34266418]
  7. Neoplasia. 2017 Aug;19(8):649-658 [PMID: 28732212]
  8. PeerJ. 2020 Jul 09;8:e9120 [PMID: 32714651]
  9. J Intern Med. 2011 Nov;270(5):428-46 [PMID: 21752111]
  10. Nucleic Acids Res. 2007 Jan;35(Database issue):D760-5 [PMID: 17099226]
  11. Thyroid. 2019 Jan;29(1):7-26 [PMID: 30484394]
  12. BMC Bioinformatics. 2003 Jan 13;4:2 [PMID: 12525261]
  13. J BUON. 2019 Mar-Apr;24(2):813-818 [PMID: 31128040]
  14. Onco Targets Ther. 2020 Feb 13;13:1311-1319 [PMID: 32103998]
  15. Onco Targets Ther. 2017 Dec 21;11:37-46 [PMID: 29317832]
  16. Bioinformatics. 2012 Mar 15;28(6):882-3 [PMID: 22257669]
  17. Biosci Rep. 2020 Aug 28;40(8): [PMID: 32766727]
  18. Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102 [PMID: 28407145]
  19. Front Oncol. 2019 May 08;9:357 [PMID: 31139560]
  20. Cancer Res. 2017 Nov 1;77(21):e108-e110 [PMID: 29092952]
  21. Sci Rep. 2018 Feb 9;8(1):2718 [PMID: 29426928]
  22. Nat Methods. 2015 Aug;12(8):697 [PMID: 26226356]
  23. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  24. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  25. J Korean Surg Soc. 2012 May;82(5):271-80 [PMID: 22563533]
  26. Medicina (Kaunas). 2021 Oct 19;57(10): [PMID: 34684168]
  27. Front Genet. 2023 Feb 27;14:1009462 [PMID: 36923792]
  28. J Diabetes Investig. 2022 Jan;13(1):112-124 [PMID: 34245661]
  29. Nucleic Acids Res. 2019 Jul 2;47(W1):W556-W560 [PMID: 31114875]
  30. Nat Rev Endocrinol. 2016 Nov;12(11):646-653 [PMID: 27418023]
  31. Nat Commun. 2020 Sep 23;11(1):4807 [PMID: 32968067]
  32. BMC Genomics. 2015 Aug 26;16:636 [PMID: 26306699]
  33. Bratisl Lek Listy. 2023;124(12):869-872 [PMID: 37983279]
  34. Br J Cancer. 2007 Aug 20;97(4):531-8 [PMID: 17667921]
  35. Front Oncol. 2015 Feb 16;5:24 [PMID: 25763354]
  36. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  37. PLoS One. 2013 Aug 16;8(8):e72708 [PMID: 23977342]
  38. Biochem Biophys Res Commun. 2015 Feb 20;457(4):621-6 [PMID: 25603050]
  39. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  40. Am J Hum Genet. 2016 Aug 4;99(2):443-50 [PMID: 27476652]
  41. J Psychiatr Res. 2021 Aug;140:522-528 [PMID: 34161896]
  42. Exp Mol Pathol. 2016 Feb;100(1):151-9 [PMID: 26708423]
  43. BMC Med Genomics. 2011 Apr 06;4:30 [PMID: 21470421]
  44. Thyroid. 2020 Dec;30(12):1771-1780 [PMID: 32495721]
  45. Exp Biol Med (Maywood). 2023 Feb;248(3):217-231 [PMID: 36740764]
  46. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  47. BMC Cancer. 2021 Apr 23;21(1):456 [PMID: 33892667]
  48. Mol Med Rep. 2018 Mar;17(3):4273-4280 [PMID: 29328476]
  49. Int Immunopharmacol. 2021 Jan;90:107238 [PMID: 33316739]
  50. Hum Mol Genet. 2001 Oct 15;10(22):2501-8 [PMID: 11709537]
  51. Horm Metab Res. 2022 Jan;54(1):7-11 [PMID: 34758495]
  52. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  53. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 [PMID: 27924014]
  54. PLoS One. 2021 Jun 11;16(6):e0251962 [PMID: 34115774]
  55. Head Neck. 2014 Mar;36(3):375-84 [PMID: 23729178]
  56. J Cancer. 2020 Jan 1;11(4):788-794 [PMID: 31949481]
  57. Lancet. 2013 Mar 23;381(9871):1058-69 [PMID: 23668556]

Word Cloud

Created with Highcharts 10.0.0geneskeyPTCanalysisgeneexpressionthyroidinvolvedDEGsidentifiedlevelsPapillaryhighnovelinsightsmechanismsdatasetsDifferentiallyexpressedweightedco-expressionnetworkWGCNAincludingimmuneinfiltrationmethylationGNA14AVPR1AresponsesignalingcarcinomasObjective:carcinomaaccountsmajoritycancersrecurrencerateaimedscreenprovideMethods:Sevenmicroarraydownloadedomnibusdatabasenormalsamplesscreenedmergeddatasetprotein-proteininteractionPPIsfunctionalmodulesutilizedidentifyPTC-associatedcharacterizedvariousaspectssetenrichmentGSEAassociationsprognosisResults:largenumbersseveralcancerpathwaysNinedown-regulatedWFS1up-regulatedLAMB3PLAUMETMFGE8PRSS23SERPINA1Patientsgroupsbetterdisease-freesurvivalDFSlowgroupKeymainlyP53pathwayestrogenapoptosisglycolysisNOTCHepithelialmesenchymaltransitionWNT_betacatenininflammatoryassociatedcellcorrespondingverificationresultsproteinsmRNAusingexternalvalidationconsistentexpectationsimplyinginvolvementsConclusion:mayservepotentialtherapeutictargetsstudyprovidesunderlyingdevelopmentIntegratedtranscriptomesequencingrevealspapillaryEnrichmentMEXPREWSS

Similar Articles

Cited By