Deep brain stimulation of the subthalamic nucleus restores spatial reversal learning in patients with Parkinson's disease.

Isabel Schneider, Robby Sch��nfeld, Annika Hanert, Sarah Philippen, Inken T��dt, Oliver Granert, Maximilian Mehdorn, Jos Becktepe, G��nther Deuschl, Daniela Berg, Steffen Paschen, Thorsten Bartsch
Author Information
  1. Isabel Schneider: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
  2. Robby Sch��nfeld: Institute of Psychology, Martin-Luther-University Halle-Wittenberg, Halle 06108, Germany.
  3. Annika Hanert: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
  4. Sarah Philippen: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany. ORCID
  5. Inken T��dt: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
  6. Oliver Granert: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
  7. Maximilian Mehdorn: Department of Neurosurgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
  8. Jos Becktepe: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
  9. G��nther Deuschl: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany. ORCID
  10. Daniela Berg: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
  11. Steffen Paschen: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
  12. Thorsten Bartsch: Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany. ORCID

Abstract

Spatial learning and navigation are supported by distinct memory systems in the human brain such as the hippocampus-based navigational system and the striatum-cortex-based system involved in motor sequence, habit and reversal learning. Here, we studied the role of subthalamic circuits in hippocampus-associated spatial memory and striatal-associated spatial reversal learning formation in patients with Parkinson's disease, who underwent a deep brain stimulation of the subthalamic nucleus. Deep brain stimulation patients (Parkinson's disease-subthalamic nucleus: = 26) and healthy subjects ( = 15) were tested in a novel experimental spatial memory task based on the Morris water maze that assesses both hippocampal place memory as well as spatial reversal learning. All subjects were trained to navigate to a distinct spatial location hidden within the virtual environment during 16 learning trials in a subthalamic nucleus Stim-On condition. Patients were then randomized into two groups with either a deep brain stimulation On or Off condition. Four hours later, subjects were retested in a delayed recall and reversal learning condition. The reversal learning was realized with a new hidden location that should be memorized during six consecutive trials. The performance was measured by means of an index indicating the improvement during the reversal learning. In the delayed recall condition, neither patients, healthy subjects nor the deep brain stimulation On- versus Off groups showed a difference in place memory performance of the former trained location. In the reversal learning condition, healthy subjects (reversal index 2.0) and patients in the deep brain stimulation On condition (reversal index 1.6) showed a significant improvement. However, patients in the deep brain stimulation Off condition (reversal index 1.1) performed significantly worse and did not improve. There were no differences between all groups in a final visual guided navigation task with a visible target. These results suggest that deep brain stimulation of subthalamic nucleus restores spatial reversal learning in a virtual navigation task in patients with Parkinson's disease and gives insight into the neuromodulation effects on cognition of subthalamic circuits in Parkinson's disease.

Keywords

References

  1. Nat Rev Neurol. 2010 Sep;6(9):487-98 [PMID: 20680036]
  2. J Neurosci. 2013 Nov 20;33(47):18531-9 [PMID: 24259575]
  3. Cortex. 2017 Apr;89:156-168 [PMID: 27890324]
  4. J Psychiatr Res. 1982-1983;17(1):37-49 [PMID: 7183759]
  5. Brain. 2010 Dec;133(Pt 12):3625-34 [PMID: 20855421]
  6. Neurobiol Aging. 1995 Nov-Dec;16(6):947-54 [PMID: 8622786]
  7. Parkinsonism Relat Disord. 2017 Mar;36:83-88 [PMID: 28027851]
  8. Neurobiol Aging. 2016 Feb;38:93-103 [PMID: 26827647]
  9. Neuron. 2015 Oct 7;88(1):64-77 [PMID: 26447573]
  10. Behav Neurosci. 1991 Apr;105(2):295-306 [PMID: 1675062]
  11. Ann Neurol. 2009 Dec;66(6):817-24 [PMID: 20035509]
  12. Neurocase. 2016 Aug;22(4):369-78 [PMID: 27337498]
  13. Neuroscience. 2018 Mar 15;374:80-90 [PMID: 29374536]
  14. Behav Brain Res. 2014 Aug 15;270:47-55 [PMID: 24815214]
  15. Rev Neurosci. 2013;24(2):125-38 [PMID: 23327862]
  16. Neurobiol Learn Mem. 2017 Mar;139:117-127 [PMID: 28057502]
  17. J Neurol Sci. 2017 Feb 15;373:88-94 [PMID: 28131236]
  18. Science. 2007 Nov 23;318(5854):1309-12 [PMID: 17962524]
  19. Neuropsychologia. 2002;40(8):1443-55 [PMID: 11931948]
  20. Prog Neurobiol. 2005 Aug;76(6):393-413 [PMID: 16249050]
  21. J Vestib Res. 2015;25(2):73-89 [PMID: 26410672]
  22. Behav Brain Res. 2012 Jan 1;226(1):171-8 [PMID: 21925543]
  23. J Neurophysiol. 2004 May;91(5):2259-72 [PMID: 14736863]
  24. NPJ Parkinsons Dis. 2017 Jan 12;3:16024 [PMID: 28725706]
  25. Exp Neurol. 2002 Jun;175(2):303-17 [PMID: 12061862]
  26. Exp Brain Res. 2001 Aug;139(3):372-6 [PMID: 11545476]
  27. J Neurosci Methods. 1984 May;11(1):47-60 [PMID: 6471907]
  28. Neurology. 2008 May 13;70(20):1916-25 [PMID: 18474848]
  29. Science. 1990 Sep 21;249(4975):1436-8 [PMID: 2402638]
  30. Annu Rev Psychol. 2013;64:135-68 [PMID: 23020641]
  31. Science. 1980 Oct 10;210(4466):207-10 [PMID: 7414331]
  32. Elife. 2017 Jul 25;6: [PMID: 28742497]
  33. Brain. 2013 Jul;136(Pt 7):2109-19 [PMID: 23801735]
  34. N Engl J Med. 1988 Apr 7;318(14):876-80 [PMID: 3352672]
  35. Neuroscience. 2017 Mar 14;345:12-26 [PMID: 26979052]
  36. Neurobiol Learn Mem. 1998 Mar;69(2):163-203 [PMID: 9619995]
  37. Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5915-20 [PMID: 18408152]
  38. Cereb Cortex. 2001 Dec;11(12):1136-43 [PMID: 11709484]
  39. Ann Neurol. 2019 Oct;86(4):527-538 [PMID: 31376171]
  40. Ann N Y Acad Sci. 2007 Dec;1121:355-75 [PMID: 17698989]
  41. Annu Rev Neurosci. 2008;31:69-89 [PMID: 18284371]
  42. J Neuropsychiatry Clin Neurosci. 2000 Winter;12(1):103-13 [PMID: 10678523]
  43. Nat Neurosci. 2013 Feb;16(2):130-8 [PMID: 23354386]
  44. J Neurol Neurosurg Psychiatry. 1992 Mar;55(3):181-4 [PMID: 1564476]
  45. Brain. 2008 Aug;131(Pt 8):2094-105 [PMID: 18577547]
  46. Science. 2010 Jun 11;328(5984):1412-5 [PMID: 20538952]
  47. J Cogn Neurosci. 2003 Nov 15;15(8):1232-43 [PMID: 14709239]
  48. Front Hum Neurosci. 2018 Jun 21;12:250 [PMID: 29977198]
  49. J Comput Assist Tomogr. 1998 Mar-Apr;22(2):324-33 [PMID: 9530404]
  50. Nat Rev Neurosci. 2006 Jun;7(6):464-76 [PMID: 16715055]
  51. Brain Neurosci Adv. 2021 Apr 9;5:2398212820975634 [PMID: 33954259]
  52. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2800-5 [PMID: 24550310]
  53. Brain. 2006 Nov;129(Pt 11):2894-907 [PMID: 17071921]
  54. Nat Neurosci. 2017 Oct 26;20(11):1504-1513 [PMID: 29073650]
  55. Neurodegener Dis. 2013;11(2):93-101 [PMID: 23036965]
  56. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  57. Nature. 2003 Sep 11;425(6954):184-8 [PMID: 12968182]
  58. Lancet Neurol. 2008 Jul;7(7):605-14 [PMID: 18538636]
  59. Mov Disord. 2020 Nov;35(11):1987-1998 [PMID: 32886420]
  60. Brain Sci. 2020 Dec 17;10(12): [PMID: 33348638]
  61. Neuroimage Clin. 2016 Dec 12;14:37-42 [PMID: 28116240]
  62. Neuroscience. 2007 Jul 29;147(4):906-18 [PMID: 17600628]
  63. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8477-81 [PMID: 8078906]
  64. Neuroimage. 2020 Nov 15;222:117300 [PMID: 32828919]

Word Cloud

Created with Highcharts 10.0.0learningreversalbrainstimulationspatialsubthalamicpatientsdeepconditionmemoryParkinson'sdiseasenucleussubjectsindexnavigationhealthytasklocationgroups1distinctsystemcircuitsDeep=placetrainedhiddenvirtualtrialsdelayedrecallperformanceimprovementshowedrestoresSpatialsupportedsystemshumanhippocampus-basednavigationalstriatum-cortex-basedinvolvedmotorsequencehabitstudiedrolehippocampus-associatedstriatal-associatedformationunderwentdisease-subthalamicnucleus:2615testednovelexperimentalbasedMorriswatermazeassesseshippocampalwellnavigatewithinenvironment16Stim-OnPatientsrandomizedtwoeitherFourhourslaterretestedrealizednewmemorizedsixconsecutivemeasuredmeansindicatingneitherOn-versusdifferenceformer206significantHoweverperformedsignificantlyworseimprovedifferencesfinalvisualguidedvisibletargetresultssuggestgivesinsightneuromodulationeffectscognitionParkinson���s

Similar Articles

Cited By