Language-like efficiency and structure in house finch song.

Mason Youngblood
Author Information
  1. Mason Youngblood: Minds and Traditions Research Group, Max Planck Institute for Geoanthropology, Jena, Thüringen, Germany. ORCID

Abstract

Communication needs to be complex enough to be functional while minimizing learning and production costs. Recent work suggests that the vocalizations and gestures of some songbirds, cetaceans and great apes may conform to linguistic laws that reflect this trade-off between efficiency and complexity. In studies of non-human communication, though, clustering signals into types cannot be done , and decisions about the appropriate grain of analysis may affect statistical signals in the data. The aim of this study was to assess the evidence for language-like efficiency and structure in house finch () song across three levels of granularity in syllable clustering. The results show strong evidence for Zipf's rank-frequency law, Zipf's law of abbreviation and Menzerath's law. Additional analyses show that house finch songs have small-world structure, thought to reflect systematic structure in syntax, and the mutual information decay of sequences is consistent with a combination of Markovian and hierarchical processes. These statistical patterns are robust across three levels of granularity in syllable clustering, pointing to a limited form of scale invariance. In sum, it appears that house finch song has been shaped by pressure for efficiency, possibly to offset the costs of female preferences for complexity.

Keywords

References

  1. Biol Lett. 2010 Aug 23;6(4):469-71 [PMID: 20106854]
  2. Proc Biol Sci. 2012 Nov 22;279(1747):4522-31 [PMID: 22977157]
  3. Nature. 2009 May 28;459(7246):564-8 [PMID: 19412161]
  4. Trends Ecol Evol. 2022 Jan;37(1):53-66 [PMID: 34598817]
  5. Biol Rev Camb Philos Soc. 2016 Feb;91(1):13-52 [PMID: 25428267]
  6. Entropy (Basel). 2022 May 11;24(5): [PMID: 35626564]
  7. Cognition. 2021 May;210:104620 [PMID: 33571814]
  8. Proc Biol Sci. 2014 Oct 7;281(1792): [PMID: 25143037]
  9. Proc Biol Sci. 2022 Jan 26;289(1967):20212473 [PMID: 35078357]
  10. R Soc Open Sci. 2022 Nov 9;9(11):220849 [PMID: 36405634]
  11. Br J Psychol. 2007 May;98(Pt 2):291-304 [PMID: 17456274]
  12. Cognition. 2006 May;100(1):173-215 [PMID: 16412411]
  13. Proc Biol Sci. 2001 Nov 7;268(1482):2261-5 [PMID: 11674874]
  14. Philos Trans R Soc Lond B Biol Sci. 2022 Jan 31;377(1843):20200313 [PMID: 34894734]
  15. Front Psychol. 2022 Feb 09;12:663397 [PMID: 35222132]
  16. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  17. Philos Trans R Soc Lond B Biol Sci. 2015 Mar 19;370(1664):20140097 [PMID: 25646520]
  18. Cognition. 2020 Dec;205:104466 [PMID: 33010667]
  19. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17897-902 [PMID: 23071337]
  20. Proc Natl Acad Sci U S A. 2006 May 23;103(21):7956-61 [PMID: 16698933]
  21. Evol Hum Sci. 2023 Apr 13;5:e10 [PMID: 37587938]
  22. Cognition. 2023 Sep;238:105527 [PMID: 37364507]
  23. Stat Appl Genet Mol Biol. 2014 Dec;13(6):633-44 [PMID: 25503672]
  24. Psychon Bull Rev. 2017 Feb;24(1):118-137 [PMID: 28120320]
  25. PLoS One. 2011 May 11;6(5):e19348 [PMID: 21589924]
  26. PLoS Comput Biol. 2020 Oct 15;16(10):e1008228 [PMID: 33057332]
  27. Hear Res. 2014 Feb;308:71-83 [PMID: 24036130]
  28. Behav Processes. 2019 Apr;161:129-138 [PMID: 29369783]
  29. Philos Trans R Soc Lond B Biol Sci. 2022 Jan 31;377(1843):20200308 [PMID: 34894729]
  30. Trends Cogn Sci. 2000 Jul;4(7):258-267 [PMID: 10859570]
  31. J Theor Biol. 2010 Jan 7;262(1):151-64 [PMID: 19782691]
  32. PLoS One. 2011;6(9):e24516 [PMID: 21915345]
  33. PLoS One. 2011 Mar 30;6(3):e18239 [PMID: 21479170]
  34. PLoS One. 2008 Apr 30;3(4):e0002051 [PMID: 18446219]
  35. Biol Lett. 2020 Feb;16(2):20190589 [PMID: 32019463]
  36. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jun;65(6 Pt 2):065102 [PMID: 12188771]
  37. Cognition. 2017 Aug;165:45-52 [PMID: 28494263]
  38. Cognition. 2021 Sep;214:104771 [PMID: 34034009]
  39. Cogn Sci. 2013 Nov-Dec;37(8):1565-78 [PMID: 23895349]
  40. Nat Commun. 2019 Aug 12;10(1):3636 [PMID: 31406118]
  41. Nat Commun. 2018 Jun 20;9(1):2417 [PMID: 29925831]
  42. Cogn Sci. 2005 Jan 2;29(1):41-78 [PMID: 21702767]
  43. PLoS One. 2015 Oct 01;10(10):e0139475 [PMID: 26427059]
  44. PLoS Comput Biol. 2021 Dec 28;17(12):e1009707 [PMID: 34962915]
  45. Nat Commun. 2022 Jul 11;13(1):4001 [PMID: 35821243]
  46. J Comp Psychol. 2012 Feb;126(1):68-81 [PMID: 21875178]
  47. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10681-6 [PMID: 18667697]
  48. Curr Biol. 2020 Sep 21;30(18):3544-3555.e6 [PMID: 32707062]
  49. Curr Biol. 2021 Jun 7;31(11):2477-2483.e3 [PMID: 33826905]
  50. Lang Cogn. 2012 Nov 1;4(4):357-380 [PMID: 23637710]
  51. Nature. 1999 Jun 3;399(6735):466-70 [PMID: 10365958]
  52. Psychon Bull Rev. 2014 Oct;21(5):1112-30 [PMID: 24664880]
  53. Bioinformatics. 2008 Mar 1;24(5):719-20 [PMID: 18024473]
  54. Trends Cogn Sci. 2019 May;23(5):389-407 [PMID: 31006626]
  55. Sci Rep. 2023 May 1;13(1):7076 [PMID: 37127781]
  56. Psychon Bull Rev. 2023 Feb;30(1):77-101 [PMID: 35840837]
  57. Proc Biol Sci. 2022 Mar 9;289(1970):20212657 [PMID: 35259983]
  58. Evol Anthropol. 2018 Sep;27(5):180-183 [PMID: 30257046]
  59. Am J Psychol. 1957 Jun;70(2):311-4 [PMID: 13424784]
  60. Sci Rep. 2024 Mar 4;14(1):5255 [PMID: 38438558]
  61. Entropy (Basel). 2021 May 25;23(6): [PMID: 34070370]
  62. Proc Biol Sci. 2019 Dec 18;286(1917):20192014 [PMID: 31847766]
  63. Proc Biol Sci. 2014 May 07;281(1785):20140460 [PMID: 24807258]
  64. Proc Biol Sci. 2019 Feb 13;286(1896):20182900 [PMID: 30963931]
  65. Curr Biol. 2021 Jul 12;31(13):2796-2808.e9 [PMID: 33989526]
  66. Front Zool. 2017 Nov 06;14:50 [PMID: 29142585]
  67. PLoS One. 2012;7(9):e44436 [PMID: 23028539]
  68. PLoS One. 2010 Mar 09;5(3):e9411 [PMID: 20231884]
  69. Anim Behav. 1999 Feb;57(2):409-419 [PMID: 10049481]
  70. Cognition. 2015 Aug;141:87-102 [PMID: 25966840]
  71. Trends Cogn Sci. 2011 Mar;15(3):113-21 [PMID: 21296608]
  72. Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2750-8 [PMID: 27091968]
  73. PLoS One. 2021 Aug 20;16(8):e0256133 [PMID: 34415939]
  74. Anim Cogn. 2010 Mar;13(2):287-301 [PMID: 19649664]

MeSH Term

Animals
Female
Finches
Language
Linguistics
Learning
Gestures
Cetacea
Vocalization, Animal

Word Cloud

Created with Highcharts 10.0.0efficiencystructurehousefinchclusteringsonglawcostsmaylinguisticlawsreflectcomplexitysignalsstatisticalevidenceacrossthreelevelsgranularitysyllableshowZipf'shierarchicalCommunicationneedscomplexenoughfunctionalminimizinglearningproductionRecentworksuggestsvocalizationsgesturessongbirdscetaceansgreatapesconformtrade-offstudiesnon-humancommunicationthoughtypesdonedecisionsappropriategrainanalysisaffectdataaimstudyassesslanguage-likeresultsstrongrank-frequencyabbreviationMenzerath'sAdditionalanalysessongssmall-worldthoughtsystematicsyntaxmutualinformationdecaysequencesconsistentcombinationMarkovianprocessespatternsrobustpointinglimitedformscaleinvariancesumappearsshapedpressurepossiblyoffsetfemalepreferencesLanguage-likebirdsongcommunicativeculturalevolution

Similar Articles

Cited By (3)