Preparation of a novel antibacterial magnesium carbonate coating on a titanium surface and its biocompatibility.

Shougang Xiang, Chengdong Zhang, Zhenju Guan, Xingping Li, Yumei Liu, Gang Feng, Xuwei Luo, Bo Zhang, Jie Weng, Dongqin Xiao
Author Information
  1. Shougang Xiang: Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China xiaodongqin@nsmc.edu.cn 1138340730@qq.com. ORCID
  2. Chengdong Zhang: Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China.
  3. Zhenju Guan: Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China xiaodongqin@nsmc.edu.cn 1138340730@qq.com.
  4. Xingping Li: Department of Orthopaedics, Chengfei Hospital Chengdu Sichuan 610091 China.
  5. Yumei Liu: Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University Nanchong Sichuan 637002 China liuyumei@cwnu.edu.cn.
  6. Gang Feng: Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China xiaodongqin@nsmc.edu.cn 1138340730@qq.com.
  7. Xuwei Luo: Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China xiaodongqin@nsmc.edu.cn 1138340730@qq.com.
  8. Bo Zhang: Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China xiaodongqin@nsmc.edu.cn 1138340730@qq.com.
  9. Jie Weng: Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China.
  10. Dongqin Xiao: Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China xiaodongqin@nsmc.edu.cn 1138340730@qq.com.

Abstract

Magnesium-based coatings have attracted great attention in surface modification of titanium implants due to their superior angiogenic and osteogenic properties. However, their biological effects as a carbonate-based constituent remain unrevealed. In this study, magnesium carbonate coatings were prepared on titanium surfaces under hydrothermal conditions and subsequently treated with hydrogen peroxide. Also, their antibacterial activity and cell biocompatibility were evaluated. The obtained coatings consisted of nanoparticles without cracks and exhibited excellent adhesion to the substrate. X-ray diffraction (XRD) results indicated pure magnesium carbonate coatings formed on the Ti surface after hydrothermal treatment. After hydrogen peroxide treatment, the phase composition of the coatings had no obvious change. Compared to the untreated coatings, the hydrogen peroxide-treated coatings showed increased surface roughness and hydrophilicity. Co-culture with () demonstrated that the obtained coatings had good antibacterial activity. cell culture results showed that the hydrogen peroxide-treated coatings enhanced the viability, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). These findings suggest that this MgCO-based coating exhibits excellent antibacterial performance and osteogenic potential. Based on the above, this study provides a simple method for preparing titanium implants with dual antibacterial and osteogenic capabilities, holding great promise in clinical applications.

References

  1. Nanomaterials (Basel). 2019 Sep 11;9(9): [PMID: 31514280]
  2. Acta Biomater. 2010 May;6(5):1861-8 [PMID: 20035905]
  3. Sci Rep. 2019 Nov 5;9(1):16074 [PMID: 31690845]
  4. Int J Mol Sci. 2023 Jun 24;24(13): [PMID: 37445744]
  5. ACS Omega. 2016 Nov 30;1(5):907-914 [PMID: 30023495]
  6. ACS Appl Mater Interfaces. 2016 Apr 20;8(15):9662-73 [PMID: 27043895]
  7. Cell Biol Toxicol. 2011 Oct;27(5):333-42 [PMID: 21681618]
  8. J Biomater Sci Polym Ed. 2016 Jul;27(10):954-71 [PMID: 27115206]
  9. J Oral Rehabil. 2014 Jun;41(6):443-76 [PMID: 24612346]
  10. Bone. 2003 May;32(5):521-31 [PMID: 12753868]
  11. Injury. 2017 Oct;48(10):2235-2241 [PMID: 28734495]
  12. J Dairy Sci. 1982 May;65(5):732-9 [PMID: 6286737]
  13. Biomaterials. 1989 Mar;10(2):118-20 [PMID: 2706298]
  14. J Biomater Appl. 2013 Jul;28(1):144-60 [PMID: 22457041]
  15. Materials (Basel). 2020 May 14;13(10): [PMID: 32423092]
  16. Sci Rep. 2017 Jan 19;7:40755 [PMID: 28102294]
  17. Am J Physiol Heart Circ Physiol. 2001 May;280(5):H2357-63 [PMID: 11299242]
  18. Biol Trace Elem Res. 2023 Jun;201(6):2823-2842 [PMID: 35870071]
  19. Digestion. 2007;75(2-3):69-73 [PMID: 17496418]
  20. J Hosp Infect. 2001 Oct;49(2):87-93 [PMID: 11567552]
  21. J Orthop Translat. 2018 Sep 28;17:42-54 [PMID: 31194031]
  22. J Orthop Res. 2010 Jan;28(1):55-61 [PMID: 19610092]
  23. Drug Des Devel Ther. 2020 Aug 26;14:3519-3533 [PMID: 32982168]
  24. Biomaterials. 2016 Mar;81:84-92 [PMID: 26724456]
  25. Connect Tissue Res. 2014 Aug;55 Suppl 1:164-8 [PMID: 25158204]
  26. BMC Gastroenterol. 2021 Mar 6;21(1):112 [PMID: 33676393]
  27. Acta Biomater. 2011 Dec;7(12):4267-77 [PMID: 21888994]
  28. J Tissue Eng. 2020 Oct 24;11:2041731420967591 [PMID: 33178410]
  29. Diagn Interv Imaging. 2012 Jun;93(6):547-57 [PMID: 22521777]
  30. Antibiotics (Basel). 2021 Oct 19;10(10): [PMID: 34680850]
  31. Biomaterials. 2015 Jan;36:44-54 [PMID: 25308520]
  32. Biomacromolecules. 2021 Nov 8;22(11):4552-4568 [PMID: 34590825]
  33. Clin J Am Soc Nephrol. 2022 Jan;17(1):121-130 [PMID: 34127484]
  34. Antimicrob Agents Chemother. 2014 Dec;58(12):7586-91 [PMID: 25288077]
  35. Acta Biomater. 2018 Apr 15;71:215-224 [PMID: 29505891]
  36. J Funct Biomater. 2022 Jun 10;13(2): [PMID: 35735933]
  37. Biomaterials. 1998 Sep;19(18):1621-39 [PMID: 9839998]
  38. Acta Biomater. 2010 May;6(5):1869-77 [PMID: 19818422]
  39. J Colloid Interface Sci. 2017 Jan 1;485:106-115 [PMID: 27662021]
  40. Biomatter. 2012 Oct-Dec;2(4):176-94 [PMID: 23507884]
  41. J Tissue Eng Regen Med. 2016 Oct;10(10):E527-E536 [PMID: 24616281]
  42. Sci Rep. 2020 Nov 5;10(1):19098 [PMID: 33154428]
  43. Wien Med Wochenschr. 2019 Jun;169(9-10):222-225 [PMID: 29147868]
  44. Br Dent J. 2010 Jan 23;208(2):61-4 [PMID: 20098381]
  45. Micromachines (Basel). 2022 Dec 12;13(12): [PMID: 36557502]
  46. Adv Sci (Weinh). 2023 Oct;10(30):e2303911 [PMID: 37698584]
  47. BMJ Open Gastroenterol. 2023 Feb;10(1): [PMID: 36849190]
  48. Burns. 2013 Sep;39(6):1131-6 [PMID: 23561480]
  49. J Hazard Mater. 2017 May 5;329:222-229 [PMID: 28178637]
  50. Nanomaterials (Basel). 2021 Jun 16;11(6): [PMID: 34208716]
  51. Eur Spine J. 2018 Oct;27(10):2463-2468 [PMID: 29736803]
  52. Acta Biomater. 2016 Apr 15;35:341-56 [PMID: 26923529]
  53. Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:483-497 [PMID: 27987735]
  54. Oxid Med Cell Longev. 2022 Jan 4;2022:2235335 [PMID: 35028003]
  55. Nat Nanotechnol. 2021 Sep;16(9):996-1003 [PMID: 34155383]
  56. Int Urol Nephrol. 2008;40(1):193-201 [PMID: 18193489]
  57. Nanomedicine (Lond). 2019 May;14(9):1109-1133 [PMID: 31050592]
  58. PLoS One. 2019 Aug 8;14(8):e0220575 [PMID: 31393906]
  59. Acta Pharm Sin B. 2021 Aug;11(8):2537-2564 [PMID: 34522597]
  60. Regen Biomater. 2021 May 16;8(3):rbab019 [PMID: 34211731]
  61. Curr Pharm Des. 2013;19(1):126-32 [PMID: 22950493]
  62. Materials (Basel). 2021 Dec 02;14(23): [PMID: 34885558]
  63. J Ren Nutr. 2007 Nov;17(6):416-22 [PMID: 17971314]
  64. PLoS One. 2013;8(3):e57618 [PMID: 23472092]
  65. Vet Med Sci. 2023 Sep;9(5):2342-2351 [PMID: 37485579]
  66. Biomed Res Int. 2019 Nov 14;2019:7908205 [PMID: 31828131]
  67. J Investig Clin Dent. 2012 Nov;3(4):258-61 [PMID: 22927130]

Word Cloud

Created with Highcharts 10.0.0coatingsantibacterialsurfacetitaniumosteogenichydrogenmagnesiumcarbonategreatimplantsstudyhydrothermalperoxideactivitycellbiocompatibilityobtainedexcellentresultstreatmentperoxide-treatedshowedcoatingMagnesium-basedattractedattentionmodificationduesuperiorangiogenicpropertiesHoweverbiologicaleffectscarbonate-basedconstituentremainunrevealedpreparedsurfacesconditionssubsequentlytreatedAlsoevaluatedconsistednanoparticleswithoutcracksexhibitedadhesionsubstrateX-raydiffractionXRDindicatedpureformedTiphasecompositionobviouschangeCompareduntreatedincreasedroughnesshydrophilicityCo-culturedemonstratedgoodcultureenhancedviabilityproliferationdifferentiationbonemarrowmesenchymalstemcellsBMSCsfindingssuggestMgCO-basedexhibitsperformancepotentialBasedprovidessimplemethodpreparingdualcapabilitiesholdingpromiseclinicalapplicationsPreparationnovel

Similar Articles

Cited By