Persistent and responsive collective motion with adaptive time delay.

Zhihan Chen, Yuebing Zheng
Author Information
  1. Zhihan Chen: Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA. ORCID
  2. Yuebing Zheng: Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA. ORCID

Abstract

It is beneficial for collective structures to simultaneously have high persistence to environmental noise and high responsivity to nontrivial external stimuli. However, without the ability to differentiate useful information from noise, there is always a tradeoff between persistence and responsivity within the collective structures. To address this, we propose adaptive time delay inspired by the adaptive behavior observed in the school of fish. This strategy is tested using particles powered by optothermal fields coupled with an optical feedback-control system. By applying the adaptive time delay with a proper threshold, we experimentally observe the responsivity of the collective structures enhanced by approximately 1.6 times without sacrificing persistence. Furthermore, we integrate adaptive time delay with long-distance transportation and obstacle-avoidance capabilities to prototype adaptive swarm microrobots. This research demonstrates the potential of adaptive time delay to address the persistence-responsivity tradeoff and lays the foundation for intelligent swarm micro/nanorobots operating in complex environments.

References

  1. Nat Commun. 2023 Jan 4;14(1):56 [PMID: 36599830]
  2. ACS Nano. 2023 May 23;17(10):9280-9289 [PMID: 37017427]
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012134 [PMID: 25679597]
  4. Phys Rev Lett. 1995 Aug 7;75(6):1226-1229 [PMID: 10060237]
  5. Nat Commun. 2018 Aug 13;9(1):3232 [PMID: 30104679]
  6. Adv Mater. 2023 Feb;35(8):e2203959 [PMID: 35986637]
  7. Nat Commun. 2018 Sep 21;9(1):3864 [PMID: 30242284]
  8. Sci Adv. 2021 Mar 17;7(12): [PMID: 33731351]
  9. Chaos. 2023 Jul 1;33(7): [PMID: 37486668]
  10. Sci Rep. 2017 Apr 13;7:46447 [PMID: 28406173]
  11. Phys Rev Lett. 2021 Dec 17;127(25):258001 [PMID: 35029446]
  12. Science. 2019 Apr 5;364(6435):70-74 [PMID: 30948548]
  13. Bioinspir Biomim. 2014 Jun;9(2):025012 [PMID: 24852272]
  14. J R Soc Interface. 2020 Jun;17(167):20190853 [PMID: 32517635]
  15. ACS Nano. 2022 Jul 26;16(7):10878-10889 [PMID: 35816157]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062708 [PMID: 25615130]
  17. J Theor Biol. 2002 Sep 7;218(1):1-11 [PMID: 12297066]
  18. Nature. 2010 Apr 8;464(7290):890-3 [PMID: 20376149]
  19. Phys Rev E. 2016 Sep;94(3-1):032306 [PMID: 27739837]
  20. Sci Adv. 2022 Jun 24;8(25):eabm6385 [PMID: 35731883]
  21. Science. 2006 Jun 2;312(5778):1402-6 [PMID: 16741126]
  22. PLoS Comput Biol. 2013;9(2):e1002915 [PMID: 23468605]
  23. Nat Commun. 2017 Feb 10;8:14301 [PMID: 28186194]
  24. Proc Biol Sci. 2018 Aug 29;285(1885): [PMID: 30158304]
  25. Sci Robot. 2018 Jul 18;3(20): [PMID: 33141727]
  26. ACS Nano. 2021 Feb 23;15(2):3434-3440 [PMID: 33556235]
  27. Phys Rev E. 2016 Mar;93(3):032307 [PMID: 27078366]
  28. Phys Rev Lett. 2014 Mar 21;112(11):118101 [PMID: 24702421]
  29. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5464-9 [PMID: 19336580]
  30. Phys Rev E. 2017 Dec;96(6-1):062413 [PMID: 29347315]
  31. Nature. 2022 Sep;609(7928):709-717 [PMID: 36131037]
  32. Nat Commun. 2020 May 21;11(1):2547 [PMID: 32439919]
  33. Phys Rev E. 2019 May;99(5-1):052602 [PMID: 31212496]
  34. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):035203 [PMID: 18517450]
  35. J Neurosci. 2015 Nov 18;35(46):15430-41 [PMID: 26586829]
  36. Phys Rev E. 2019 Jul;100(1-1):012607 [PMID: 31499896]
  37. Phys Rev E. 2022 Nov;106(5-1):054612 [PMID: 36559364]
  38. Eur Phys J E Soft Matter. 2018 Apr 9;41(4):49 [PMID: 29626264]
  39. PLoS Comput Biol. 2015 Mar 26;11(3):e1004089 [PMID: 25811627]

Grants

  1. R01 GM146962/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0adaptivetimedelaycollectivestructurespersistenceresponsivityhighnoisewithouttradeoffaddressswarmbeneficialsimultaneouslyenvironmentalnontrivialexternalstimuliHoweverabilitydifferentiateusefulinformationalwayswithinproposeinspiredbehaviorobservedschoolfishstrategytestedusingparticlespoweredoptothermalfieldscoupledopticalfeedback-controlsystemapplyingproperthresholdexperimentallyobserveenhancedapproximately16timessacrificingFurthermoreintegratelong-distancetransportationobstacle-avoidancecapabilitiesprototypemicrorobotsresearchdemonstratespotentialpersistence-responsivitylaysfoundationintelligentmicro/nanorobotsoperatingcomplexenvironmentsPersistentresponsivemotion

Similar Articles

Cited By