The Arabidopsis leaf quantitative atlas: a cellular and subcellular mapping through unified data integration.

Dimitri Tolleter, Edward N Smith, Clémence Dupont-Thibert, Clarisse Uwizeye, Denis Vile, Pauline Gloaguen, Denis Falconet, Giovanni Finazzi, Yves Vandenbrouck, Gilles Curien
Author Information
  1. Dimitri Tolleter: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France.
  2. Edward N Smith: Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands. ORCID
  3. Clémence Dupont-Thibert: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France.
  4. Clarisse Uwizeye: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France.
  5. Denis Vile: Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR 759, Université de Montpellier, INRAE, Institut Agro, Montpellier, France.
  6. Pauline Gloaguen: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France.
  7. Denis Falconet: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France.
  8. Giovanni Finazzi: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France.
  9. Yves Vandenbrouck: CEA DRF, Gif-sur-Yvette, France.
  10. Gilles Curien: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France. ORCID

Abstract

Quantitative analyses and models are required to connect a plant's cellular organisation with its metabolism. However, quantitative data are often scattered over multiple studies, and finding such data and converting them into useful information is time-consuming. Consequently, there is a need to centralise the available data and to highlight the remaining knowledge gaps. Here, we present a step-by-step approach to manually extract quantitative data from various information sources, and to unify the data format. First, data from Arabidopsis leaf were collated, checked for consistency and correctness and curated by cross-checking sources. Second, quantitative data were combined by applying calculation rules. They were then integrated into a unique comprehensive, referenced, modifiable and reusable data compendium representing an Arabidopsis reference leaf. This atlas contains the metrics of the 15 cell types found in leaves at the cellular and subcellular levels.

Keywords

References

  1. Plant J. 2020 Jan;101(2):420-441 [PMID: 31520498]
  2. Plant Cell Environ. 2006 May;29(5):940-9 [PMID: 17087477]
  3. J Exp Bot. 2022 Sep 12;73(16):5414-5427 [PMID: 35609084]
  4. Plant Physiol. 2012 Feb;158(2):905-16 [PMID: 22135430]
  5. Plant Cell Physiol. 2007 Aug;48(8):1159-69 [PMID: 17602189]
  6. Plant Cell Environ. 2012 Sep;35(9):1631-46 [PMID: 22471732]
  7. Plant J. 1998 Aug;15(3):441-7 [PMID: 9750355]
  8. Plant Cell Environ. 2006 Dec;29(12):2216-27 [PMID: 17081254]
  9. Plant Physiol. 2016 Jun;171(2):723-6 [PMID: 27288524]
  10. J Cell Sci. 2018 Jan 29;131(2): [PMID: 28320821]
  11. Funct Plant Biol. 2012 Nov;39(11):821-838 [PMID: 32480833]
  12. Mol Syst Biol. 2009;5:271 [PMID: 19455135]
  13. Development. 1998 May;125(10):1815-22 [PMID: 9550714]
  14. Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2202112119 [PMID: 35981134]
  15. Photosynth Res. 2013 Nov;117(1-3):547-56 [PMID: 23975202]
  16. Plant Physiol. 2010 Apr;152(4):2142-57 [PMID: 20200072]
  17. Plant Cell. 2001 Jul;13(7):1499-510 [PMID: 11449047]
  18. Front Plant Sci. 2017 May 29;8:894 [PMID: 28611809]
  19. Ann Bot. 2017 Jul 1;120(1):21-28 [PMID: 28444369]
  20. Plant Cell Environ. 2016 Nov;39(11):2557-2569 [PMID: 27487196]
  21. FEBS J. 2010 Feb;277(3):749-60 [PMID: 20067525]
  22. Plant Cell Environ. 2016 Jan;39(1):12-25 [PMID: 25158995]
  23. Elife. 2020 Jul 29;9: [PMID: 32723478]
  24. PLoS One. 2015 Feb 25;10(2):e0118122 [PMID: 25714357]
  25. PLoS One. 2017 Sep 19;12(9):e0185050 [PMID: 28926847]
  26. Plant Physiol. 2023 May 31;192(2):1359-1377 [PMID: 36913519]
  27. Curr Protoc. 2021 May;1(5):e153 [PMID: 34043287]
  28. Plant Cell. 2014 Aug;26(8):3224-42 [PMID: 25139005]
  29. Plant Cell. 2020 Dec;32(12):3689-3705 [PMID: 33093147]
  30. J Exp Bot. 2017 Jun 01;68(14):3915-3924 [PMID: 28637277]
  31. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11108-13 [PMID: 10995473]
  32. Front Plant Sci. 2020 Jan 08;10:1635 [PMID: 31969890]
  33. Plant Cell Environ. 2009 Sep;32(9):1185-200 [PMID: 19236607]
  34. Mol Syst Biol. 2012;8:606 [PMID: 22929616]
  35. Plant Physiol. 2017 Jun;174(2):922-934 [PMID: 28442501]
  36. Sci Data. 2016 Mar 15;3:160018 [PMID: 26978244]
  37. Int J Mol Sci. 2020 Nov 26;21(23): [PMID: 33256100]
  38. Plant Physiol. 1994 Jan;104(1):201-207 [PMID: 12232072]
  39. Plant Cell Environ. 2006 Jul;29(7):1273-83 [PMID: 17080949]
  40. Plant Methods. 2010 Jul 02;6:17 [PMID: 20598116]
  41. Planta. 1983 Mar;157(2):105-10 [PMID: 24264063]
  42. Plant Mol Biol. 1998 Sep;38(1-2):163-89 [PMID: 9738966]
  43. Bioinformatics. 2015 Apr 1;31(7):1144-6 [PMID: 25416749]
  44. Plant Sci. 2021 Sep;310:110990 [PMID: 34315604]
  45. Plant Cell Environ. 2015 Dec;38(12):2735-46 [PMID: 26047314]
  46. Elife. 2021 Sep 07;10: [PMID: 34491200]
  47. C R Biol. 2021 Jul 02;344(2):157-163 [PMID: 34213853]
  48. Ann Bot. 2002 May;89(5):595-604 [PMID: 12099534]
  49. Micron. 2013 Feb;45:119-28 [PMID: 23265941]
  50. Plant Cell Physiol. 2002 Apr;43(4):384-92 [PMID: 11978866]
  51. Sci Rep. 2018 May 21;8(1):7919 [PMID: 29784955]
  52. Cells. 2021 Jan 25;10(2): [PMID: 33503919]
  53. Plant J. 2020 Jul;103(1):68-82 [PMID: 31985867]
  54. Elife. 2021 Feb 25;10: [PMID: 33629953]
  55. J Microsc. 2009 May;234(2):158-72 [PMID: 19397745]
  56. Biophys J. 2007 Mar 1;92(5):1792-805 [PMID: 17172310]
  57. J Exp Bot. 2009;60(11):3005-10 [PMID: 19454766]
  58. Biochem Soc Trans. 2017 Aug 15;45(4):945-952 [PMID: 28687715]
  59. Plant J. 2012 Feb;69(3):553-63 [PMID: 21955023]
  60. Plant Physiol. 2023 Jan 2;191(1):35-46 [PMID: 36200899]
  61. Appl Opt. 1996 Nov 20;35(33):6585-98 [PMID: 21127682]
  62. PLoS One. 2018 Feb 21;13(2):e0192380 [PMID: 29466386]
  63. Protoplasma. 2004 Jun;223(2-4):221-7 [PMID: 15221528]
  64. Mol Syst Biol. 2018 Mar 1;14(3):e7962 [PMID: 29496885]
  65. Plant Methods. 2023 Feb 1;19(1):10 [PMID: 36726130]
  66. Plant Methods. 2012 May 06;8(1):15 [PMID: 22559714]
  67. Plant Cell. 2011 Dec;23(12):4428-45 [PMID: 22198148]
  68. Plant Physiol. 2002 Mar;128(3):1031-45 [PMID: 11891258]
  69. Plant Physiol. 2022 Feb 4;188(2):713-725 [PMID: 35235662]
  70. Sci Data. 2020 Oct 9;7(1):334 [PMID: 33037224]
  71. J Exp Bot. 2010 Mar;61(5):1321-35 [PMID: 20150518]
  72. Annu Rev Plant Biol. 2021 Jun 17;72:847-866 [PMID: 33730513]
  73. J Cell Sci. 1972 Sep;11(2):357-77 [PMID: 4561802]
  74. PNAS Nexus. 2022 Oct 04;1(5):pgac225 [PMID: 36712360]

Word Cloud

Created with Highcharts 10.0.0dataquantitativeArabidopsisleafcellularinformationsourcessubcellularQuantitativeanalysesmodelsrequiredconnectplant'sorganisationmetabolismHoweveroftenscatteredmultiplestudiesfindingconvertingusefultime-consumingConsequentlyneedcentraliseavailablehighlightremainingknowledgegapspresentstep-by-stepapproachmanuallyextractvariousunifyformatFirstcollatedcheckedconsistencycorrectnesscuratedcross-checkingSecondcombinedapplyingcalculationrulesintegrateduniquecomprehensivereferencedmodifiablereusablecompendiumrepresentingreferenceatlascontainsmetrics15celltypesfoundleaveslevelsatlas:mappingunifiedintegrationcurationanatomymodellingorganelle

Similar Articles

Cited By