Quantitative Microbial Risk Assessment Framework Incorporating Water Ages with Growth Rates.

Emily Clements, Katherine Crank, Robert Nerenberg, Ariel Atkinson, Daniel Gerrity, Deena Hannoun
Author Information
  1. Emily Clements: Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States. ORCID
  2. Katherine Crank: Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States. ORCID
  3. Robert Nerenberg: Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, United States. ORCID
  4. Ariel Atkinson: Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States.
  5. Daniel Gerrity: Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States. ORCID
  6. Deena Hannoun: Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States.

Abstract

Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of via a growth model. In turn, the concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection () and clinically severe illness () due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual exceeded the commonly used 1 in 10,000 (10) risk benchmark in all scenarios, but the median annual was always 1-3 orders of magnitude below 10. The median annual was lower in homes with two occupants (4.7 × 10) than with one occupant (7.5 × 10) due to more frequent use of water fixtures, which reduced water ages. The median annual for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual values while reducing additional water consumption by 45-62%.

Keywords

References

  1. AWWA Water Sci. 2020 Jul-Aug;2(4):e1186 [PMID: 32838226]
  2. Curr Environ Health Rep. 2018 Jun;5(2):263-271 [PMID: 29744757]
  3. Water Res. 2023 Oct 15;245:120643 [PMID: 37748346]
  4. J Water Resour Plan Manag. 2023 Apr;149(4): [PMID: 36970712]
  5. Crit Rev Microbiol. 2016;42(1):65-74 [PMID: 24580080]
  6. Microorganisms. 2021 Dec 31;10(1): [PMID: 35056530]
  7. Environ Sci Technol. 2012 Nov 6;46(21):11566-74 [PMID: 23046164]
  8. Environ Int. 2020 Apr;137:105561 [PMID: 32088542]
  9. Curr Microbiol. 2021 May;78(5):1792-1797 [PMID: 33758992]
  10. Water Res. 2011 Nov 15;45(18):5826-36 [PMID: 21924754]
  11. Environ Sci Technol. 2023 Dec 5;57(48):20448-20449 [PMID: 37948750]
  12. Sci Rep. 2021 Jan 21;11(1):1916 [PMID: 33479467]
  13. Int J Hyg Environ Health. 2016 Nov;219(8):915-919 [PMID: 27432615]
  14. Sci Total Environ. 2019 Jun 25;671:404-410 [PMID: 30933796]
  15. Am J Epidemiol. 2019 Sep 1;188(9):1686-1694 [PMID: 31225857]
  16. Water Res. 2012 Mar 1;46(3):611-21 [PMID: 22153355]
  17. Appl Environ Microbiol. 2010 Nov;76(22):7382-91 [PMID: 20851954]
  18. Int J Food Microbiol. 1994 Nov;23(3-4):277-94 [PMID: 7873331]
  19. Water Res. 2018 May 1;134:261-279 [PMID: 29428779]
  20. Int J Food Microbiol. 2000 Jul 15;58(3):147-57 [PMID: 10939265]
  21. Microorganisms. 2021 Dec 09;9(12): [PMID: 34946143]
  22. PLoS One. 2016 Apr 20;11(4):e0153106 [PMID: 27097024]
  23. Water Res. 2017 Aug 1;119:288-303 [PMID: 28500949]
  24. mBio. 2018 Feb 13;9(1): [PMID: 29440575]
  25. Microorganisms. 2021 Jan 15;9(1): [PMID: 33467483]
  26. Microbiome. 2017 Oct 4;5(1):130 [PMID: 28978350]
  27. Int J Hyg Environ Health. 2019 May;222(4):678-686 [PMID: 31036480]
  28. Water Res. 2020 Jan 1;168:115163 [PMID: 31614239]
  29. Environ Sci Technol. 2014;48(3):1426-35 [PMID: 24401122]
  30. Clin Microbiol Rev. 2004 Apr;17(2):413-33 [PMID: 15084508]
  31. Microorganisms. 2022 Mar 03;10(3): [PMID: 35336130]
  32. Water Res. 2022 Jul 15;220:118615 [PMID: 35617788]
  33. Water Res. 2022 Aug 1;221:118812 [PMID: 35816914]
  34. Environ Sci Technol. 2019 Apr 16;53(8):4528-4541 [PMID: 30629886]
  35. J Hyg (Lond). 1983 Feb;90(1):81-9 [PMID: 6401778]
  36. Appl Environ Microbiol. 2008 Jul;74(14):4585-8 [PMID: 18502936]
  37. PLoS One. 2018 Jun 21;13(6):e0199429 [PMID: 29928013]
  38. Risk Anal. 2007 Dec;27(6):1581-96 [PMID: 18093054]
  39. J Water Resour Plan Manag. 2020 Dec 1;24(12): [PMID: 33627937]
  40. J Infect Dis. 1983 Feb;147(2):302-7 [PMID: 6827146]
  41. MMWR Surveill Summ. 2011 Sep 23;60(12):38-68 [PMID: 21937977]
  42. Water Res X. 2020 Mar 03;7:100047 [PMID: 32195459]
  43. J Appl Microbiol. 2011 Apr;110(4):1032-44 [PMID: 21276147]
  44. Environ Sci Technol. 2020 Dec 15;54(24):15914-15924 [PMID: 33232602]

MeSH Term

Legionella pneumophila
Water Supply
Water Microbiology
Sanitary Engineering
Risk Assessment
Legionella
Drinking Water

Chemicals

Drinking Water

Word Cloud

Created with Highcharts 10.0.0waterannual10usedpurgingmedianageriskdevicesWatermicrobialagespremiseplumbingconcentrationsdueRisklowerhomes7×oneoccupantreduceddrinkingsystemsoftenproxyqualityrarelydirectinputassessingstudydirectlylinkedsystemviagrowthmodelturnquantitativeassessmentcalculateassociatedprobabilitiesinfectionclinicallysevereillnessshoweringreductionsachievedreducealsoquantifiedexceededcommonly1000benchmarkscenariosalways1-3ordersmagnitudetwooccupants45frequentusefixtures39-43%scheduled1-2timesperdaySmartpurgecertainperiodnonusemaintainedvaluesreducingadditionalconsumption45-62%QuantitativeMicrobialAssessmentFrameworkIncorporatingAgesGrowthRatesLegionellapneumophilaQMRAflushing

Similar Articles

Cited By

No available data.