Exploring HMMR as a therapeutic frontier in breast cancer treatment, its interaction with various cell cycle genes, and targeting its overexpression through specific inhibitors.

Aisha Shabir, Hina Qayoom, Burhan Ul Haq, Adel Abo Mansoor, Adil Abdelrahim, Irshad Ahmad, Abdullah Almilabairy, Fuzail Ahmad, Manzoor Ahmad Mir
Author Information
  1. Aisha Shabir: Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India.
  2. Hina Qayoom: Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India.
  3. Burhan Ul Haq: Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India.
  4. Adel Abo Mansoor: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
  5. Adil Abdelrahim: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
  6. Irshad Ahmad: Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
  7. Abdullah Almilabairy: Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Abha, Saudi Arabia.
  8. Fuzail Ahmad: Respiratory Care Department, College of Applied Sciences Almaarefa University, Abha, Saudi Arabia.
  9. Manzoor Ahmad Mir: Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India.

Abstract

Among women, breast carcinoma is one of the most complex cancers, with one of the highest death rates worldwide. There have been significant improvements in treatment methods, but its early detection still remains an issue to be resolved. This study explores the multifaceted function of hyaluronan-mediated motility receptor (HMMR) in breast cancer progression. HMMR's association with key cell cycle regulators (AURKA, TPX2, and CDK1) underscores its pivotal role in cancer initiation and advancement. HMMR's involvement in microtubule assembly and cellular interactions, both extracellularly and intracellularly, provides critical insights into its contribution to cancer cell processes. Elevated HMMR expression triggered by inflammatory signals correlates with unfavorable prognosis in breast cancer and various other malignancies. Therefore, recognizing HMMR as a promising therapeutic target, the study validates the overexpression of HMMR in breast cancer and various pan cancers and its correlation with certain proteins such as AURKA, TPX2, and CDK1 through online databases. Furthermore, the pathways associated with HMMR were explored using pathway enrichment analysis, such as Gene Ontology, offering a foundation for the development of effective strategies in breast cancer treatment. The study further highlights compounds capable of inhibiting certain pathways, which, in turn, would inhibit the upregulation of HMMR in breast cancer. The results were further validated via MD simulations in addition to molecular docking to explore protein-protein/ligand interaction. Consequently, these findings imply that HMMR could play a pivotal role as a crucial oncogenic regulator, highlighting its potential as a promising target for the therapeutic intervention of breast carcinoma.

Keywords

References

  1. Cancer Manag Res. 2018 Nov 21;10:6097-6108 [PMID: 30538558]
  2. Neoplasia. 2009 Sep;11(9):956-63 [PMID: 19724689]
  3. J Exp Med. 1996 Apr 1;183(4):1663-8 [PMID: 8666924]
  4. Mol Biol Cell. 2003 Jun;14(6):2262-76 [PMID: 12808028]
  5. Database (Oxford). 2013 Jan 15;2013:bas060 [PMID: 23325629]
  6. Exp Cell Res. 2021 Nov 15;408(2):112860 [PMID: 34624323]
  7. CA Cancer J Clin. 2023 Jan;73(1):17-48 [PMID: 36633525]
  8. Cell Commun Signal. 2017 Nov 14;15(1):48 [PMID: 29137675]
  9. Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514 [PMID: 32442275]
  10. EMBO J. 1994 Jan 15;13(2):286-96 [PMID: 7508860]
  11. Int J Biol Sci. 2020 Aug 27;16(15):2812-2827 [PMID: 33061798]
  12. Nat Commun. 2022 Apr 7;13(1):1895 [PMID: 35393420]
  13. Breast Cancer Res Treat. 2012 Feb;131(3):765-75 [PMID: 21452023]
  14. Clin Cancer Res. 2008 Jun 15;14(12):3798-806 [PMID: 18559599]
  15. Wound Repair Regen. 2014 Sep-Oct;22(5):579-93 [PMID: 25039417]
  16. Database (Oxford). 2010 Aug 05;2010:baq020 [PMID: 20689021]
  17. Breast Care (Basel). 2011;6(3):193-198 [PMID: 21779224]
  18. FASEB J. 2019 May;33(5):6365-6377 [PMID: 30802150]
  19. J Biol Chem. 2010 Aug 20;285(34):26461-74 [PMID: 20558733]
  20. Mol Cell. 2003 Oct;12(4):851-62 [PMID: 14580337]
  21. Mol Cancer Res. 2020 Mar;18(3):403-413 [PMID: 31822520]
  22. Oncotarget. 2017 Aug 3;8(41):70617-70629 [PMID: 29050306]
  23. Cell. 1998 Nov 25;95(5):591-2; author reply 592-3 [PMID: 9845361]
  24. Nucleic Acids Res. 2019 Jul 2;47(W1):W556-W560 [PMID: 31114875]
  25. Biomed Pharmacother. 2020 Sep;129:110217 [PMID: 32559619]
  26. Cell. 2018 Sep 20;175(1):117-132.e21 [PMID: 30197082]
  27. J Cell Sci. 2019 Sep 23;132(18): [PMID: 31434716]
  28. Hum Genomics. 2009 Apr;3(3):291-7 [PMID: 19403463]
  29. Cell Cycle. 2014;13(14):2248-61 [PMID: 24875404]
  30. Neoplasia. 2017 Aug;19(8):649-658 [PMID: 28732212]
  31. Oncotarget. 2018 Apr 20;9(30):20941-20952 [PMID: 29765511]
  32. J Pathol. 2001 Sep;195(2):191-6 [PMID: 11592098]
  33. Nucleic Acids Res. 2010 Jan;38(Database issue):D552-6 [PMID: 19897548]
  34. J Cell Biol. 1992 Jun;117(6):1343-50 [PMID: 1376732]
  35. Hum Mutat. 2000;15(1):57-61 [PMID: 10612823]
  36. Front Immunol. 2023 Nov 15;14:1277243 [PMID: 38035069]
  37. Cell Cycle. 2020 Mar;19(5):505-524 [PMID: 32048898]
  38. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612 [PMID: 33237311]
  39. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 [PMID: 27924014]
  40. Biomolecules. 2021 Oct 20;11(11): [PMID: 34827550]
  41. Methods Mol Biol. 2011;696:291-303 [PMID: 21063955]
  42. Cancer Res. 2014 Jun 1;74(11):3168-79 [PMID: 24710409]

Word Cloud

Created with Highcharts 10.0.0breastHMMRcancertreatmentstudycellAURKAvarioustherapeuticcarcinomaonecancersHMMR'scycleTPX2CDK1pivotalrolepromisingtargetoverexpressioncertainpathwaysMDinteractionAmongwomencomplexhighestdeathratesworldwidesignificantimprovementsmethodsearlydetectionstillremainsissueresolvedexploresmultifacetedfunctionhyaluronan-mediatedmotilityreceptorprogressionassociationkeyregulatorsunderscoresinitiationadvancementinvolvementmicrotubuleassemblycellularinteractionsextracellularlyintracellularlyprovidescriticalinsightscontributionprocessesElevatedexpressiontriggeredinflammatorysignalscorrelatesunfavorableprognosismalignanciesThereforerecognizingvalidatespancorrelationproteinsonlinedatabasesFurthermoreassociatedexploredusingpathwayenrichmentanalysisGeneOntologyofferingfoundationdevelopmenteffectivestrategieshighlightscompoundscapableinhibitingturninhibitupregulationresultsvalidatedviasimulationsadditionmoleculardockingexploreprotein-protein/ligandConsequentlyfindingsimplyplaycrucialoncogenicregulatorhighlightingpotentialinterventionExploringfrontiergenestargetingspecificinhibitorsCdk1simulationTpx2biomarkersmTOR

Similar Articles

Cited By