Dominant contribution of atmospheric nonlinearities to ENSO asymmetry and extreme El Niño events.

G Srinivas, J Vialard, F Liu, A Voldoire, T Izumo, E Guilyardi, M Lengaigne
Author Information
  1. G Srinivas: CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India. srinivasg@nio.org.
  2. J Vialard: LOCEAN-IPSL, Sorbonne Université -CNRS-IRD-MNHN, Paris, France.
  3. F Liu: LOCEAN-IPSL, Sorbonne Université -CNRS-IRD-MNHN, Paris, France.
  4. A Voldoire: CNRM, CNRS, Météo-France, Université de Toulouse, Toulouse, France.
  5. T Izumo: IRD, UMR241 (IRD-UPF-ILM-Ifremer), Tahiti, French Polynesia.
  6. E Guilyardi: LOCEAN-IPSL, Sorbonne Université -CNRS-IRD-MNHN, Paris, France.
  7. M Lengaigne: MARBEC, CNRS, IFREMER, IRD, University of Montpellier, Sète, France.

Abstract

Extreme El Niño events have outsized impacts and strongly contribute to the El Niño Southern Oscillation (ENSO) warm/cold phase asymmetries. There is currently no consensus on the respective importance of oceanic and atmospheric nonlinearities for those asymmetries. Here, we use atmospheric and oceanic general circulation models that reproduce ENSO asymmetries well to quantify the atmospheric nonlinearities contribution. The linear and nonlinear components of the wind stress response to Sea Surface Temperature (SST) anomalies are isolated using ensemble atmospheric experiments, and used to force oceanic experiments. The wind stress-SST nonlinearity is dominated by the deep atmospheric convective response to SST. This wind-stress nonlinearity contributes to ~ 40% of the peak amplitude of extreme El Niño events and ~ 55% of the prolonged eastern Pacific warming they generate until the following summer. This large contribution arises because nonlinearities consistently drive equatorial westerly anomalies, while the larger linear component is made less efficient by easterly anomalies in the western Pacific during fall and winter. Overall, wind-stress nonlinearities fully account for the eastern Pacific positive ENSO skewness. Our findings underscore the pivotal role of atmospheric nonlinearities in shaping extreme El Niño events and, more generally, ENSO asymmetry.

Keywords

References

  1. Sci Rep. 2024 Jan 30;14(1):2457 [PMID: 38291103]
  2. Science. 1987 Oct 30;238(4827):657-9 [PMID: 17816543]
  3. Nature. 2012 Aug 16;488(7411):365-9 [PMID: 22895343]
  4. Atmosphere (Basel). 2018;9(4): [PMID: 30013797]
  5. Sci Rep. 2021 Aug 25;11(1):17465 [PMID: 34433849]

Word Cloud

Created with Highcharts 10.0.0atmosphericnonlinearitiesElNiñoENSOeventsasymmetriesoceaniccontributionSSTanomaliesextremePacificlinearwindstressresponseexperimentsnonlinearitywind-stresseasternasymmetryExtremeoutsizedimpactsstronglycontributeSouthernOscillationwarm/coldphasecurrentlyconsensusrespectiveimportanceusegeneralcirculationmodelsreproducewellquantifynonlinearcomponentsSeaSurfaceTemperatureisolatedusingensembleusedforcestress-SSTdominateddeepconvectivecontributesto ~ 40%peakamplitudeand ~ 55%prolongedwarminggeneratefollowingsummerlargearisesconsistentlydriveequatorialwesterlylargercomponentmadelessefficienteasterlywesternfallwinterOverallfullyaccountpositiveskewnessfindingsunderscorepivotalroleshapinggenerallyDominantAsymmetriesAtmosphericLaNiñaRainfallWind

Similar Articles

Cited By (2)