Pasteurella multocida activates apoptosis via the FAK-AKT-FOXO1 axis to cause pulmonary integrity loss, bacteremia, and eventually a cytokine storm.

Guangfu Zhao, Yunhan Tang, Ruitong Dan, Muhan Xie, Tianci Zhang, Pan Li, Fang He, Nengzhang Li, Yuanyi Peng
Author Information
  1. Guangfu Zhao: College of Veterinary Medicine, Southwest University, Chongqing, China. ORCID
  2. Yunhan Tang: College of Veterinary Medicine, Southwest University, Chongqing, China.
  3. Ruitong Dan: College of Veterinary Medicine, Southwest University, Chongqing, China.
  4. Muhan Xie: College of Veterinary Medicine, Southwest University, Chongqing, China.
  5. Tianci Zhang: Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
  6. Pan Li: Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China.
  7. Fang He: College of Veterinary Medicine, Southwest University, Chongqing, China.
  8. Nengzhang Li: College of Veterinary Medicine, Southwest University, Chongqing, China. lich2001020@163.com.
  9. Yuanyi Peng: College of Veterinary Medicine, Southwest University, Chongqing, China. pyy2002@sina.com.

Abstract

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.

Keywords

References

  1. Circ Res. 2016 Nov 11;119(11):1204-1214 [PMID: 27780829]
  2. Microb Pathog. 2017 Apr;105:218-225 [PMID: 28242425]
  3. Prev Vet Med. 2023 Mar;212:105833 [PMID: 36693297]
  4. Nat Rev Cancer. 2002 Feb;2(2):91-100 [PMID: 12635172]
  5. Front Vet Sci. 2020 Sep 11;7:636 [PMID: 33024748]
  6. mBio. 2017 Nov 21;8(6): [PMID: 29162713]
  7. PLoS Pathog. 2017 Feb 3;13(2):e1006159 [PMID: 28158302]
  8. Clin Microbiol Rev. 2013 Jul;26(3):631-55 [PMID: 23824375]
  9. Biochem Pharmacol. 2009 Jun 15;77(12):1763-72 [PMID: 19428331]
  10. J Community Hosp Intern Med Perspect. 2022 Apr 12;12(2):50-52 [PMID: 35712681]
  11. Cureus. 2023 Mar 13;15(3):e36096 [PMID: 37065280]
  12. Biochim Biophys Acta Rev Cancer. 2021 Aug;1876(1):188556 [PMID: 33932560]
  13. J Infect Public Health. 2019 Jan - Feb;12(1):95-96 [PMID: 29908795]
  14. Mediators Inflamm. 2017;2017:3415380 [PMID: 28250575]
  15. BMC Vet Res. 2022 Nov 26;18(1):416 [PMID: 36447208]
  16. Trop Med Infect Dis. 2022 Dec 11;7(12): [PMID: 36548684]
  17. J Cell Sci. 2000 Oct;113 ( Pt 20):3563-71 [PMID: 11017872]
  18. Biochim Biophys Acta. 2011 Nov;1813(11):1978-86 [PMID: 21440011]
  19. Respir Physiol Neurobiol. 2023 Sep;315:104091 [PMID: 37331420]
  20. Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63 [PMID: 24355989]
  21. Microbiol Mol Biol Rev. 2019 Sep 4;83(4): [PMID: 31484691]
  22. Cureus. 2021 Mar 28;13(3):e14162 [PMID: 33936874]
  23. Cell Stem Cell. 2014 Aug 7;15(2):123-38 [PMID: 25105578]
  24. Nature. 2004 Jul 8;430(6996):242-9 [PMID: 15241422]
  25. Nat Microbiol. 2019 Feb;4(2):269-279 [PMID: 30510170]
  26. mSphere. 2022 Oct 26;7(5):e0027622 [PMID: 36069435]
  27. Int J Med Microbiol. 2010 Apr;300(4):218-28 [PMID: 19665926]
  28. Vet Microbiol. 2006 May 31;114(3-4):304-17 [PMID: 16427218]
  29. Curr Top Microbiol Immunol. 2012;361:1-22 [PMID: 22643916]
  30. Cell. 2011 Nov 11;147(4):742-58 [PMID: 22078876]
  31. Signal Transduct Target Ther. 2023 Jan 2;8(1):1 [PMID: 36588107]
  32. Vet Res. 1998 May-Aug;29(3-4):233-54 [PMID: 9689740]
  33. Microb Pathog. 2023 Oct;183:106212 [PMID: 37353176]
  34. Cureus. 2022 Mar 8;14(3):e22950 [PMID: 35411274]
  35. Microbiol Spectr. 2023 Mar 14;:e0455422 [PMID: 36916939]
  36. Infect Immun. 2019 Nov 18;87(12): [PMID: 31570555]
  37. Front Cell Infect Microbiol. 2017 Jun 20;7:251 [PMID: 28676843]
  38. N Engl J Med. 2020 Dec 3;383(23):2255-2273 [PMID: 33264547]
  39. J Leukoc Biol. 2018 Feb;103(2):275-285 [PMID: 29372933]
  40. Vet Microbiol. 2020 Apr;243:108646 [PMID: 32273022]
  41. Immunotherapy. 2016 Jul;8(8):959-70 [PMID: 27381687]
  42. Front Vet Sci. 2017 Nov 09;4:189 [PMID: 29170739]
  43. J Med Virol. 2021 Jan;93(1):250-256 [PMID: 32592501]
  44. Front Cell Infect Microbiol. 2023 May 30;13:1158888 [PMID: 37325511]
  45. Inflamm Bowel Dis. 2006 May;12(5):413-24 [PMID: 16670531]
  46. Gastroenterology. 2013 Aug;145(2):407-15 [PMID: 23619146]
  47. Adv Sci (Weinh). 2023 Aug;10(24):e2207631 [PMID: 37344348]
  48. Anim Health Res Rev. 2007 Dec;8(2):129-50 [PMID: 18218157]
  49. Pathogens. 2022 Nov 27;11(12): [PMID: 36558763]
  50. Nat Commun. 2020 Aug 6;11(1):3910 [PMID: 32764693]
  51. Front Vet Sci. 2021 Jul 08;8:687922 [PMID: 34307527]
  52. Microb Pathog. 2020 Mar;140:103968 [PMID: 31927003]
  53. Vet Microbiol. 2008 Apr 1;128(1-2):1-22 [PMID: 18061377]
  54. PLoS Pathog. 2013;9(10):e1003679 [PMID: 24098126]
  55. Int J Antimicrob Agents. 2020 Jun;55(6):105982 [PMID: 32305588]
  56. Nat Med. 2011 Feb;17(2):216-22 [PMID: 21240264]

Grants

  1. 32302876/National Natural Science Foundation of China
  2. Beef/Yak Cattle, CARS-37/Earmarked Fund for China Agriculture Research System
  3. SWU-KQ22068/Fundamental Research Funds for the Central Universities

MeSH Term

Humans
Animals
Rabbits
Mice
Pasteurella multocida
Pasteurella Infections
Proto-Oncogene Proteins c-akt
Cytokine Release Syndrome
Lung
Bacteremia
Apoptosis
Mammals
Forkhead Box Protein O1
Rodent Diseases

Chemicals

Proto-Oncogene Proteins c-akt
FOXO1 protein, human
Forkhead Box Protein O1

Word Cloud

Created with Highcharts 10.0.0multocidaPpulmonaryintegritylungapoptosissystemicinfectionbacteremiapathogenesiscytokinestormepithelialPasteurellaanimalsdamagelossFAK-AKT-FOXO1axisimportantrespiratorymousemodelsfounddemonstratedleadsmitigatedphasemultocida-inducedcellszoonoticpathogencapableinfectingdiverserangehostsincludinghumansfarmwildHoweverprecisemechanismscompromisesmammalssubsequentlyinducesremainlargelyunexploredstudybasedrabbitcausesalsodueFurthermoreaspectevidencedobservedmultiorganinflammationultimatelycanIL-6-neutralizingantibodiesresultdividedtwophases:BasedunbiasedRNA-seqdatadiscoveredfindingsvalidatedTC-1murinelungsmodelmiceConverselyadministrationAc-DEVD-CHOinhibitoreffectivelyrestoredsignificantlyinhibitedattenuatedreducedmortalitymolecularlevelinvolvedcellThusresearchprovidescrucialinformationregardwellpotentialtreatmentoptionsbacterialdiseasesactivatesviacauseeventuallypneumonia

Similar Articles

Cited By (2)