Computational and experimental identification of keystone interactions in Ebola virus matrix protein VP40 dimer formation.

Yogesh Narkhede, Roopashi Saxena, Tej Sharma, Jacob P Conarty, Valentina Toro Ramirez, Balindile B Motsa, Souad Amiar, Sheng Li, Prem P Chapagain, Olaf Wiest, Robert V Stahelin
Author Information
  1. Yogesh Narkhede: Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
  2. Roopashi Saxena: Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
  3. Tej Sharma: Department of Physics, Florida International University, Miami, Florida, USA.
  4. Jacob P Conarty: Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
  5. Valentina Toro Ramirez: Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
  6. Balindile B Motsa: Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
  7. Souad Amiar: Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
  8. Sheng Li: Department of Medicine, University of California, San Diego, California, USA.
  9. Prem P Chapagain: Department of Physics, Florida International University, Miami, Florida, USA. ORCID
  10. Olaf Wiest: Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
  11. Robert V Stahelin: Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA. ORCID

Abstract

The Ebola virus (EBOV) is a lipid-enveloped virus with a negative sense RNA genome that can cause severe and often fatal viral hemorrhagic fever. The assembly and budding of EBOV is regulated by the matrix protein, VP40, which is a peripheral protein that associates with anionic lipids at the inner leaflet of the plasma membrane. VP40 is sufficient to form virus-like particles (VLPs) from cells, which are nearly indistinguishable from authentic virions. Due to the restrictions of studying EBOV in BSL-4 facilities, VP40 has served as a surrogate in cellular studies to examine the EBOV assembly and budding process from the host cell plasma membrane. VP40 is a dimer where inhibition of dimer formation halts budding and formation of new VLPs as well as VP40 localization to the plasma membrane inner leaflet. To better understand VP40 dimer stability and critical amino acids to VP40 dimer formation, we integrated computational approaches with experimental validation. Site saturation/alanine scanning calculation, combined with molecular mechanics-based generalized Born with Poisson-Boltzmann surface area (MM-GB/PBSA) method and molecular dynamics simulations were used to predict the energetic contribution of amino acids to VP40 dimer stability and the hydrogen bonding network across the dimer interface. These studies revealed several previously unknown interactions and critical residues predicted to impact VP40 dimer formation. In vitro and cellular studies were then pursued for a subset of VP40 mutations demonstrating reduction in dimer formation (in vitro) or plasma membrane localization (in cells). Together, the computational and experimental approaches revealed critical residues for VP40 dimer stability in an alpha-helical interface (between residues 106-117) as well as in a loop region (between residues 52-61) below this alpha-helical region. This study sheds light on the structural origins of VP40 dimer formation and may inform the design of a small molecule that can disrupt VP40 dimer stability.

Keywords

References

  1. Biochem Soc Trans. 2022 Dec 16;50(6):1607-1617 [PMID: 36454645]
  2. Biophys J. 2012 Jun 6;102(11):2517-25 [PMID: 22713567]
  3. Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37 [PMID: 27322406]
  4. Structure. 2003 Apr;11(4):423-33 [PMID: 12679020]
  5. J Virol. 2015 Sep;89(18):9440-53 [PMID: 26136573]
  6. Cell Rep. 2021 Apr 13;35(2):108986 [PMID: 33852858]
  7. Antiviral Res. 2009 Mar;81(3):189-97 [PMID: 19114059]
  8. Sci Rep. 2016 Jan 12;6:19125 [PMID: 26753796]
  9. J Phys Chem B. 2018 May 31;122(21):5389-5399 [PMID: 29401388]
  10. J Biol Chem. 2017 Apr 14;292(15):6108-6122 [PMID: 28167534]
  11. J Infect Public Health. 2022 Mar;15(3):285-292 [PMID: 35085865]
  12. Elife. 2020 Oct 05;9: [PMID: 33016878]
  13. Sci Rep. 2016 Nov 16;6:37258 [PMID: 27849047]
  14. Biomedicines. 2020 Jul 17;8(7): [PMID: 32709043]
  15. J Biol Chem. 2013 Feb 22;288(8):5779-89 [PMID: 23297401]
  16. Sci Transl Med. 2012 Feb 29;4(123):123ra24 [PMID: 22378924]
  17. Biochem Biophys Res Commun. 2018 Oct 12;504(4):635-640 [PMID: 30205953]
  18. J Biol Chem. 2018 Mar 2;293(9):3335-3349 [PMID: 29348171]
  19. Future Virol. 2015 May;10(5):537-546 [PMID: 26120351]
  20. Proteins. 2023 Jul;91(7):920-932 [PMID: 36757060]
  21. Front Pharmacol. 2023 Mar 08;14:1083429 [PMID: 36969842]
  22. Biochem Soc Trans. 2015 Oct;43(5):773-86 [PMID: 26517882]
  23. J Virol. 2010 Jul;84(14):7053-63 [PMID: 20463076]
  24. J Chem Phys. 2020 Jul 28;153(4):044130 [PMID: 32752662]
  25. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  26. Bull World Health Organ. 1978;56(2):245 [PMID: 307454]
  27. Expert Opin Ther Targets. 2014 Feb;18(2):115-20 [PMID: 24283270]
  28. Cell. 2013 Aug 15;154(4):763-74 [PMID: 23953110]
  29. EMBO J. 2000 Aug 15;19(16):4228-36 [PMID: 10944105]
  30. Cell. 2020 Apr 2;181(1):6 [PMID: 32243796]
  31. Viruses. 2021 Jul 15;13(7): [PMID: 34372582]
  32. Protein Sci. 2024 May;33(5):e4978 [PMID: 38591637]
  33. J Biol Chem. 2021 Jan-Jun;296:100796 [PMID: 34019871]
  34. J Comput Chem. 2013 Sep 30;34(25):2135-45 [PMID: 23832629]
  35. J Virol. 2005 Feb;79(3):1898-905 [PMID: 15650213]
  36. EMBO J. 2000 Dec 15;19(24):6732-41 [PMID: 11118208]
  37. J Lipid Res. 2024 Mar;65(3):100512 [PMID: 38295986]
  38. J Phys Chem B. 2023 Jul 27;127(29):6449-6461 [PMID: 37458567]
  39. Structure. 2023 Sep 7;31(9):1038-1051.e7 [PMID: 37392738]

Grants

  1. R01 AI158220/NIAID NIH HHS
  2. S10 OD027043/NIH HHS
  3. /NIH Office of the Director
  4. /National Institute of Allergy and Infectious Diseases

MeSH Term

Humans
Ebolavirus
Hemorrhagic Fever, Ebola
Cell Membrane
Molecular Dynamics Simulation
Amino Acids
Viral Matrix Proteins

Chemicals

Amino Acids
Viral Matrix Proteins

Word Cloud

Created with Highcharts 10.0.0VP40dimerformationvirusEBOVplasmamembranestabilityresiduesEbolaassemblybuddingproteinstudiescriticalexperimentalmolecularcanmatrixinnerleafletVLPscellscellularwelllocalizationaminoacidscomputationalapproachesdynamicssimulationsinterfacerevealedinteractionsvitroalpha-helicalregionlipid-envelopednegativesenseRNAgenomecausesevereoftenfatalviralhemorrhagicfeverregulatedperipheralassociatesanioniclipidssufficientformvirus-likeparticlesnearlyindistinguishableauthenticvirionsDuerestrictionsstudyingBSL-4facilitiesservedsurrogateexamineprocesshostcellinhibitionhaltsnewbetterunderstandintegratedvalidationSitesaturation/alaninescanningcalculationcombinedmechanics-basedgeneralizedBornPoisson-BoltzmannsurfaceareaMM-GB/PBSAmethodusedpredictenergeticcontributionhydrogenbondingnetworkacrossseveralpreviouslyunknownpredictedimpactpursuedsubsetmutationsdemonstratingreductionTogether106-117loop52-61studyshedslightstructuraloriginsmayinformdesignsmallmoleculedisruptComputationalidentificationkeystoneRosettaoligomerization

Similar Articles

Cited By (2)