Small regulatory RNA RSaX28 promotes virulence by reinforcing the stability of RNAIII in community-associated ST398 clonotype .

Ying Jian, Tianchi Chen, Ziyu Yang, Guoxiu Xiang, Kai Xu, Yanan Wang, Na Zhao, Lei He, Qian Liu, Min Li
Author Information
  1. Ying Jian: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  2. Tianchi Chen: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  3. Ziyu Yang: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  4. Guoxiu Xiang: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  5. Kai Xu: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  6. Yanan Wang: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  7. Na Zhao: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  8. Lei He: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  9. Qian Liu: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
  10. Min Li: Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Abstract

() is a notorious pathogen that cause metastatic or complicated infections. Hypervirulent ST398 clonotype strains, remarkably increased in recent years, dominated Community-associated (CA-SA) infections in the past decade in China. Small RNAs like RNAIII have been demonstrated to play important roles in regulating the virulence of , however, the regulatory roles played by many of these sRNAs in the ST398 clonotype strains are still unclear. Through transcriptome screening and combined with knockout phenotype analysis, we have identified a highly transcribed sRNA, RSaX28, in the ST398 clonotype strains. Sequence analysis revealed that RSaX28 is highly conserved in the most epidemic clonotypes of , but its high transcription level is particularly prominent in the ST398 clonotype strains. Characterization of RSaX28 through RACE and Northern blot revealed its length to be 533nt. RSaX28 is capable of promoting the hemolytic ability, reducing biofilm formation capacity, and enhancing virulence of in the murine infection model. Through IntaRNA prediction and EMSA validation, we found that RSaX28 can specifically interact with RNAIII, promoting its stability and positively regulating the translation of downstream alpha-toxin while inhibiting the translation of Sbi, thereby regulating the virulence and biofilm formation capacity of the ST398 clonotype strains. RSaX28 is an important virulence regulatory factor in the ST398 clonotype and represents a potential important target for future treatment and immune intervention against infections.

Keywords

References

  1. Emerg Microbes Infect. 2019;8(1):471-478 [PMID: 30924398]
  2. PLoS Pathog. 2010 Jun 03;6(6):e1000927 [PMID: 20532214]
  3. Infect Immun. 2018 Jan 22;86(2): [PMID: 29133345]
  4. J Antimicrob Chemother. 2022 Sep 30;77(10):2816-2826 [PMID: 35848785]
  5. Mol Cell. 2008 Oct 10;32(1):150-8 [PMID: 18851841]
  6. FEMS Microbiol Rev. 2004 May;28(2):183-200 [PMID: 15109784]
  7. J Bacteriol. 2012 Jun;194(11):2924-38 [PMID: 22493015]
  8. Front Microbiol. 2020 May 12;11:908 [PMID: 32528428]
  9. PLoS One. 2010 May 20;5(5):e10725 [PMID: 20505759]
  10. Plasmid. 2006 Jan;55(1):58-63 [PMID: 16051359]
  11. Nucleic Acids Res. 2015 Oct 30;43(19):9232-48 [PMID: 26240382]
  12. Proc Natl Acad Sci U S A. 2016 May 31;113(22):E3101-10 [PMID: 27185949]
  13. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140-5 [PMID: 9501229]
  14. Front Microbiol. 2021 Mar 04;12:636788 [PMID: 33746929]
  15. Infect Immun. 1987 Dec;55(12):3103-10 [PMID: 3679545]
  16. J Clin Microbiol. 2000 Mar;38(3):1008-15 [PMID: 10698988]
  17. Cell. 2009 Feb 20;136(4):615-28 [PMID: 19239884]
  18. Nat Commun. 2022 Jun 22;13(1):3560 [PMID: 35732654]
  19. PLoS Pathog. 2014 Mar 20;10(3):e1003979 [PMID: 24651379]
  20. Genome Med. 2018 Jan 29;10(1):5 [PMID: 29378646]
  21. J Bacteriol. 2018 Oct 23;200(22): [PMID: 30150231]
  22. J Infect Dis. 2020 Mar 16;221(Suppl 2):S220-S228 [PMID: 32176793]
  23. Annu Rev Microbiol. 2016 Sep 8;70:299-316 [PMID: 27482744]
  24. Microb Pathog. 2002 Nov;33(5):239-49 [PMID: 12473438]
  25. Clin Microbiol Rev. 2015 Jul;28(3):603-61 [PMID: 26016486]
  26. Front Microbiol. 2023 Feb 22;14:1101754 [PMID: 36910215]
  27. BMC Infect Dis. 2019 Oct 22;19(1):873 [PMID: 31640587]
  28. mBio. 2012 Feb 21;3(1): [PMID: 22354957]
  29. RNA. 2015 May;21(5):1005-17 [PMID: 25805861]
  30. Front Microbiol. 2017 May 05;8:819 [PMID: 28529509]
  31. Microbiome. 2020 Jun 5;8(1):85 [PMID: 32503672]
  32. Nucleic Acids Res. 2003 Jul 1;31(13):3429-31 [PMID: 12824340]
  33. Trends Microbiol. 2010 Jul;18(7):315-22 [PMID: 20452218]
  34. N Engl J Med. 1998 Aug 20;339(8):520-32 [PMID: 9709046]
  35. J Infect Dis. 2003 Sep 1;188(5):706-18 [PMID: 12934187]
  36. Environ Microbiol. 2019 Oct;21(10):3873-3884 [PMID: 31298776]
  37. Nucleic Acids Res. 2017 Jun 20;45(11):6746-6760 [PMID: 28379505]
  38. BMC Genomics. 2013 Feb 26;14:126 [PMID: 23442205]
  39. Emerg Microbes Infect. 2018 Mar 29;7(1):45 [PMID: 29593254]
  40. Euro Surveill. 2013 Jan 24;18(4):20380 [PMID: 23369389]
  41. J Bacteriol. 2006 Oct;188(19):6739-56 [PMID: 16980476]
  42. Cell Host Microbe. 2010 Jul 22;8(1):116-27 [PMID: 20638647]
  43. Emerg Infect Dis. 2011 Mar;17(3):502-5 [PMID: 21392444]
  44. J Vis Exp. 2021 Feb 23;(168): [PMID: 33720114]
  45. Nucleic Acids Res. 2018 Sep 28;46(17):8803-8816 [PMID: 29986060]
  46. Med Microbiol Immunol. 2014 Feb;203(1):1-12 [PMID: 23955428]
  47. Methods. 2020 Apr 1;176:62-70 [PMID: 30953757]
  48. Nucleic Acids Res. 2019 Feb 28;47(4):1740-1758 [PMID: 30551143]
  49. Nat Rev Microbiol. 2005 Dec;3(12):948-58 [PMID: 16322743]

MeSH Term

Mice
Animals
Staphylococcus aureus
Virulence
RNA, Bacterial
Staphylococcal Infections
Virulence Factors
Methicillin-Resistant Staphylococcus aureus

Chemicals

RNAIII, Staphylococcus aureus
RNA, Bacterial
Virulence Factors

Word Cloud

Created with Highcharts 10.0.0ST398RSaX28clonotypevirulencestrainsRNAIIIinfectionsimportantregulatingregulatorySmallrolesanalysishighlyrevealedpromotingbiofilmformationcapacitystabilitytranslationnotoriouspathogencausemetastaticcomplicatedHypervirulentremarkablyincreasedrecentyearsdominatedCommunity-associatedCA-SApastdecadeChinaRNAslikedemonstratedplayhoweverplayedmanysRNAsstilluncleartranscriptomescreeningcombinedknockoutphenotypeidentifiedtranscribedsRNASequenceconservedepidemicclonotypeshightranscriptionlevelparticularlyprominentCharacterizationRACENorthernblotlength533ntcapablehemolyticabilityreducingenhancingmurineinfectionmodelIntaRNApredictionEMSAvalidationfoundcanspecificallyinteractpositivelydownstreamalpha-toxininhibitingSbitherebyfactorrepresentspotentialtargetfuturetreatmentimmuneinterventionRNApromotesreinforcingcommunity-associatedStaphylococcusaureus

Similar Articles

Cited By