Development of combination therapies with BTK inhibitors and dasatinib to treat CNS-infiltrating E2A-PBX1+/preBCR+ ALL.

Gaia Gentile, Teresa Poggio, Antonella Catalano, Minna Voutilainen, Mari Lahnalampi, Marta Andrade-Martinez, Tobias Ma, Roman Sankowski, Lina Goncharenko, Stefan Tholen, Kyuho Han, David W Morgens, Marco Prinz, Michael Lübbert, Sophia Engel, Tanja Nicole Hartmann, Gunnar Cario, Martin Schrappe, Lennart Lenk, Martin Stanulla, Justus Duyster, Peter Bronsert, Michael C Bassik, Michael L Cleary, Oliver Schilling, Merja Heinäniemi, Jesús Duque-Afonso
Author Information
  1. Gaia Gentile: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  2. Teresa Poggio: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. ORCID
  3. Antonella Catalano: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  4. Minna Voutilainen: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.
  5. Mari Lahnalampi: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland. ORCID
  6. Marta Andrade-Martinez: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. ORCID
  7. Tobias Ma: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  8. Roman Sankowski: Department of Neuropathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. ORCID
  9. Lina Goncharenko: Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  10. Stefan Tholen: Institute of Surgical Pathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. ORCID
  11. Kyuho Han: Department of Genetics, Stanford University School of Medicine, Stanford, CA. ORCID
  12. David W Morgens: Department of Genetics, Stanford University School of Medicine, Stanford, CA.
  13. Marco Prinz: Department of Neuropathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  14. Michael Lübbert: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  15. Sophia Engel: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. ORCID
  16. Tanja Nicole Hartmann: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. ORCID
  17. Gunnar Cario: Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
  18. Martin Schrappe: Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany. ORCID
  19. Lennart Lenk: Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany. ORCID
  20. Martin Stanulla: Department of Pediatrics, University Medical Center Hannover, Hannover, Germany.
  21. Justus Duyster: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. ORCID
  22. Peter Bronsert: Institute of Surgical Pathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  23. Michael C Bassik: Department of Genetics, Stanford University School of Medicine, Stanford, CA.
  24. Michael L Cleary: Department of Pathology, Stanford University School of Medicine, Stanford, CA.
  25. Oliver Schilling: Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  26. Merja Heinäniemi: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland. ORCID
  27. Jesús Duque-Afonso: Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. ORCID

Abstract

ABSTRACT: The t(1;19) translocation, encoding the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B-cell receptor (preBCR+) phenotype. Relapse in patients with E2A-PBX1+ ALL frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased short hairpin RNA (shRNA) library screening approaches, we identified Bruton tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, the combination of dasatinib with BTK inhibitors (BTKi; ibrutinib, acalabrutinib, or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced phospholipase C gamma 2 (PLCG2) and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, particularly reducing CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse with E2A-PBX1+/preBCR+ ALL across most of performed assays, with the combination of dasatinib and BTKi proving effective in reducing CNS infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.

References

  1. Blood. 2008 Aug 15;112(4):1005-12 [PMID: 18477770]
  2. J Clin Invest. 2015 Sep;125(9):3667-80 [PMID: 26301816]
  3. N Engl J Med. 2015 Dec 17;373(25):2425-37 [PMID: 26639149]
  4. Cancer Cell. 2011 Dec 13;20(6):715-27 [PMID: 22169110]
  5. Br J Haematol. 2020 Jul;190(2):e110-e114 [PMID: 32452526]
  6. Eur J Cancer. 2019 Aug;117:121-130 [PMID: 31279304]
  7. Leukemia. 2010 Feb;24(2):450-9 [PMID: 20016529]
  8. J Clin Oncol. 2021 Nov 1;39(31):3441-3452 [PMID: 34310172]
  9. Blood. 1991 Feb 15;77(4):687-93 [PMID: 1671560]
  10. Ann Hematol. 2017 Jul;96(7):1069-1075 [PMID: 28451802]
  11. Blood. 2015 Jan 29;125(5):820-30 [PMID: 25428221]
  12. Cancer Metastasis Rev. 2020 Mar;39(1):173-187 [PMID: 31970588]
  13. Blood. 2011 Dec 15;118(25):6521-8 [PMID: 21931113]
  14. Sci Rep. 2022 Mar 8;12(1):4043 [PMID: 35260738]
  15. Blood. 2017 Mar 2;129(9):1155-1165 [PMID: 28031181]
  16. Lancet Oncol. 2008 Mar;9(3):257-68 [PMID: 18308251]
  17. Commun Biol. 2021 Jan 15;4(1):73 [PMID: 33452446]
  18. Pharmacol Res. 2021 Mar;165:105463 [PMID: 33513356]
  19. Blood. 2022 Oct 27;140(17):1907-1916 [PMID: 35789260]
  20. Leukemia. 2009 Aug;23(8):1406-9 [PMID: 19282835]
  21. Cancer Cell. 2012 Nov 13;22(5):656-67 [PMID: 23153538]
  22. Nat Biotechnol. 2020 Mar;38(3):276-278 [PMID: 32055031]
  23. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  24. Cancer Res. 2016 Dec 1;76(23):6937-6949 [PMID: 27758892]
  25. Leukemia. 2017 Jan;31(1):51-57 [PMID: 27461063]
  26. Sci Rep. 2017 Dec 4;7(1):16878 [PMID: 29203879]
  27. Leukemia. 2016 Jun;30(6):1246-54 [PMID: 26847027]
  28. Blood Adv. 2022 Feb 22;6(4):1296-1308 [PMID: 34724705]
  29. Cell Mol Neurobiol. 2015 Apr;35(3):313-322 [PMID: 25352418]
  30. J Med Chem. 2019 Sep 12;62(17):7923-7940 [PMID: 31381333]
  31. J Pharmacol Exp Ther. 2017 Nov;363(2):240-252 [PMID: 28882879]
  32. Bacteriol Rev. 1956 Dec;20(4):243-58 [PMID: 13403845]
  33. Nat Genet. 2015 Sep;47(9):1020-1029 [PMID: 26214592]
  34. Cancers (Basel). 2021 Apr 13;13(8): [PMID: 33924486]
  35. Leukemia. 2021 May;35(5):1317-1329 [PMID: 33526860]
  36. Cancer Gene Ther. 2022 Nov;29(11):1751-1760 [PMID: 35794338]
  37. Blood. 2012 Sep 6;120(10):2032-41 [PMID: 22493293]
  38. J Clin Med. 2021 Apr 29;10(9): [PMID: 33946897]
  39. Cancer Res. 2018 Nov 15;78(22):6497-6508 [PMID: 30262461]
  40. Cancer Cell. 2015 Mar 9;27(3):409-25 [PMID: 25759025]
  41. Hemasphere. 2022 Oct 12;6(11):e788 [PMID: 36258923]
  42. N Engl J Med. 2010 Jun 17;362(24):2260-70 [PMID: 20525995]
  43. Lancet Reg Health Eur. 2022 Jun;17:100398 [PMID: 35573974]
  44. Haematologica. 2017 Feb;102(2):346-355 [PMID: 27686375]

Grants

  1. R01 CA214888/NCI NIH HHS
  2. UL1 TR001085/NCATS NIH HHS

MeSH Term

Dasatinib
Agammaglobulinaemia Tyrosine Kinase
Humans
Animals
Mice
Protein Kinase Inhibitors
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Central Nervous System Neoplasms
Antineoplastic Combined Chemotherapy Protocols
Oncogene Proteins, Fusion
Cell Line, Tumor
Cell Proliferation

Chemicals

Dasatinib
Agammaglobulinaemia Tyrosine Kinase
Protein Kinase Inhibitors
BTK protein, human
Oncogene Proteins, Fusion

Word Cloud

Created with Highcharts 10.0.0ALLE2A-PBX1+/preBCR+BTKdasatinibCNSproliferationcellscombinationproteininvolvedE2A-PBX1+decreasedinhibitorsBTKiibrutinibhumanreducedassaysreducinginfiltrationABSTRACT:t119translocationencodingoncogenicfusionE2ATCF3-PBX1acutelymphoblasticleukemiaassociatedpre-B-cellreceptorpreBCR+phenotypeRelapsepatientsfrequentlyoccurscentralnervoussystemThereforemedicalneedidentificationactiveregimenstreatmentUsingunbiasedshorthairpinRNAshRNAlibraryscreeningapproachesidentifiedBrutontyrosinekinasekeygenesensitivityDepletionshRNAsresulteddasatinib-treatedcomparedcontrol-transducedMoreoveracalabrutinibzanubrutinibsignificantlymurinecellphospholipaseCgamma2PLCG2phosphorylationtotallevelsincreaseddisease-freesurvivalmicesecondarytransplantationparticularlyCNS-leukemicHencepPLCG2pBTKprimarypatientsamplesincludingALLssummarygeneticdepletionpharmacologicalinhibitionincreaseeffectsmouseacrossperformedprovingeffectivein vivoDevelopmenttherapiestreatCNS-infiltrating

Similar Articles

Cited By