Unraveling spatial patterns of COVID-19 in Italy: Global forces and local economic drivers.

Eleonora Cutrini, Luca Salvati
Author Information
  1. Eleonora Cutrini: Department of Economics and Law University of Macerata Macerata Italy. ORCID
  2. Luca Salvati: Department of Economics and Law University of Macerata Macerata Italy.

Abstract

This article investigates the spatial patterns of coronavirus disease 2019 (COVID-19) infection in Italy and its determinants from March 9 to June 15, 2020, a time interval covering the so-called first wave of COVID pandemics in Europe. The results, based on negative binomial regressions and linear spatial models, confirm the importance of multiple factors that positively correlate with the number of recorded cases. Economic forces, including urban agglomeration, industrial districts, concentration of large companies (both before and after the beginning of the 'lockdown') and a north-south gradient, are the most significant predictors of the strength of COVID-19 infection. These effects are statistically more robust in the spatial models than in the aspatial ones. We interpretate our results in the light of pitfalls related to data reliability, and we discuss policy implications and possible avenues for future research.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9 [PMID: 20018697]
  2. Environ Res. 2020 Sep;188:109754 [PMID: 32526492]
  3. Sci Total Environ. 2020 Jul 15;726:138605 [PMID: 32302812]
  4. J Reg Sci. 2021 Mar;61(2):407-441 [PMID: 33362296]
  5. Science. 2020 May 1;368(6490):489-493 [PMID: 32179701]
  6. Sci Total Environ. 2021 Apr 10;764:142799 [PMID: 33066965]
  7. Tijdschr Econ Soc Geogr. 2020 Jul;111(3):482-496 [PMID: 32836489]
  8. Environ Pollut. 2020 Jun;261:114465 [PMID: 32268945]
  9. Reg Sci Policy Prac. 2020 Dec;12(6):1047-1062 [PMID: 38607811]
  10. J Comput Sci. 2010 Aug 1;1(3):132-145 [PMID: 21415939]
  11. Int J Biometeorol. 2007 Mar;51(4):253-63 [PMID: 17139500]
  12. Environ Res. 2021 Feb;193:110556 [PMID: 33278470]
  13. BMJ. 2020 Feb 19;368:m606 [PMID: 32075786]
  14. Geogr J. 2006 Jun;172(2):130-144 [PMID: 32367889]
  15. Appl Health Econ Health Policy. 2020 Aug;18(4):509-517 [PMID: 32495067]
  16. Nat Commun. 2020 Aug 26;11(1):4264 [PMID: 32848152]
  17. Lancet. 2020 Feb 15;395(10223):507-513 [PMID: 32007143]
  18. Reg Sci Policy Prac. 2021 Nov;13(Suppl 1):73-108 [PMID: 38607853]
  19. N Engl J Med. 2020 Mar 5;382(10):970-971 [PMID: 32003551]
  20. Nature. 2020 Aug;584(7821):425-429 [PMID: 32604404]
  21. Science. 2020 Apr 24;368(6489):395-400 [PMID: 32144116]

Word Cloud

Created with Highcharts 10.0.0spatialCOVID-19patternsinfectionItalyresultsmodelsforceslocaleconomicarticleinvestigatescoronavirusdisease2019determinantsMarch9June152020timeintervalcoveringso-calledfirstwaveCOVIDpandemicsEuropebasednegativebinomialregressionslinearconfirmimportancemultiplefactorspositivelycorrelatenumberrecordedcasesEconomicincludingurbanagglomerationindustrialdistrictsconcentrationlargecompaniesbeginning'lockdown'north-southgradientsignificantpredictorsstrengtheffectsstatisticallyrobustaspatialonesinterpretatelightpitfallsrelateddatareliabilitydiscusspolicyimplicationspossibleavenuesfutureresearchUnravelingItaly:GlobaldriversCOVID���19contagionstructureanalysis

Similar Articles

Cited By (1)