Fitness trade-offs and the origins of endosymbiosis.

Michael A Brockhurst, Duncan D Cameron, Andrew P Beckerman
Author Information
  1. Michael A Brockhurst: Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom. ORCID
  2. Duncan D Cameron: Department of Environmental and Earth Sciences, School of Natural Sciences, University of Manchester, Manchester, United Kingdom.
  3. Andrew P Beckerman: School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom.

Abstract

Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.

References

  1. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7359-64 [PMID: 20368449]
  2. Interface Focus. 2017 Oct 6;7(5):20170001 [PMID: 28839925]
  3. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8627-33 [PMID: 17494762]
  4. Trends Microbiol. 2016 Jan;24(1):63-75 [PMID: 26612499]
  5. Nat Commun. 2017 Jul 04;8:15973 [PMID: 28675159]
  6. PLoS One. 2011;6(11):e26370 [PMID: 22073160]
  7. Nat Ecol Evol. 2023 Jul;7(7):1022-1044 [PMID: 37202501]
  8. Ecol Lett. 2021 Feb;24(2):239-248 [PMID: 33146947]
  9. Proc Biol Sci. 2023 Sep 13;290(2006):20231083 [PMID: 37700642]
  10. FEMS Microbiol Lett. 2019 Jun 1;366(12): [PMID: 31271421]
  11. Nat Microbiol. 2023 Oct;8(10):1809-1819 [PMID: 37653009]
  12. Nat Commun. 2014 Jun 10;5:4087 [PMID: 24912610]
  13. Nat Rev Microbiol. 2011 Nov 08;10(1):13-26 [PMID: 22064560]
  14. Curr Biol. 2024 Nov 12;: [PMID: 39549700]
  15. Nature. 2010 Oct 21;467(7318):929-34 [PMID: 20962839]
  16. Science. 1972 Jun 9;176(4039):1122-3 [PMID: 5035468]
  17. Microbiology (Reading). 2020 Mar;166(3):262-277 [PMID: 31967537]
  18. Curr Biol. 2019 Jun 3;29(11):R485-R495 [PMID: 31163163]
  19. Philos Trans R Soc Lond B Biol Sci. 2020 Sep 28;375(1808):20190602 [PMID: 32772665]
  20. PLoS Biol. 2010 Jan 12;8(1):e1000280 [PMID: 20084095]
  21. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10169-76 [PMID: 25713367]
  22. Nat Microbiol. 2022 Aug;7(8):1141-1150 [PMID: 35927448]
  23. Curr Biol. 2024 Apr 22;34(8):1621-1634.e9 [PMID: 38377997]
  24. Elife. 2017 Apr 27;6: [PMID: 28447935]
  25. Microb Ecol. 2014 Apr;67(3):700-21 [PMID: 24402368]
  26. Am Nat. 1997 Jul;150 Suppl 1:S80-99 [PMID: 18811314]
  27. Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48 [PMID: 20124341]
  28. Evolution. 2023 Jul 27;77(8):1882-1892 [PMID: 37202149]

MeSH Term

Symbiosis
Ecosystem
Exercise
Genetic Drift
Mutation

Word Cloud

Created with Highcharts 10.0.0trade-offsevolutionaryoriginssymbiosesevolutionsymbioticEndosymbiosisdrivesinnovationunderpinsfunctiondiverseecosystemsmechanistichoweverremainunclearpartearlyeventsobscuredsubsequentgeneticdriftEssayhighlightsexperimentalstudiesfacultativehost-switchedsyntheticrevealingimportantrolefitnesswithin-hostfree-livingnichesearly-stagenewassociationsmutationaltargetsunderpinningcommonlyregulatorygenessinglemutationsmajorphenotypiceffectsmultipletraitsthusenablingreinforcingtransitionlifestyleFitnessendosymbiosis

Similar Articles

Cited By