Exploration of Exopolysaccharide from HDE-8: Unveiling Structure, Bioactivity, and Food Industry Applications.

Yi Yang, Guangbin Ye, Xintong Qi, Bosen Zhou, Liansheng Yu, Gang Song, Renpeng Du
Author Information
  1. Yi Yang: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
  2. Guangbin Ye: Institute of Life Sciences, Youjiang Medical University for Nationalities, Baise 533000, China.
  3. Xintong Qi: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
  4. Bosen Zhou: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
  5. Liansheng Yu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
  6. Gang Song: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
  7. Renpeng Du: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

Abstract

A strain of HDE-8 was isolated from homemade longan fermentation broth. The exopolysaccharide (EPS) yield of the strain was 25.1 g/L. The EPS was isolated and purified, and the structure was characterized using various techniques, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, high-performance size exclusion chromatography (HPSEC), and scanning electron microscopy (SEM). The monosaccharide composition of the EPS was glucose, with a molecular weight (Mw) of 1.7 × 10 Da. NMR spectroscopy revealed that the composition of the HDE-8 EPS consisted of -glucose pyranose linked by α-(1→4) and α-(1→6) bonds. The SEM analysis of the EPS showed an irregular sheet-like structure. Physicochemical analysis demonstrated that EPSs exhibit excellent thermal stability and high viscosity, making them suitable for fermentation in heat-processed and acidic foods. Additionally, milk coagulation tests showed that the presence of EPSs promotes milk coagulation when supplemented with sucrose. It suggests that EPSs have wide-ranging potential applications as food additives, improving the texture and taste of dairy products. This study provides practical guidance for the commercial use of HDE-8 EPSs in the food and related industries.

Keywords

References

  1. Int J Biol Macromol. 2023 May 1;236:123967 [PMID: 36906201]
  2. Glycoconj J. 2015 Feb;32(1-2):17-27 [PMID: 25417068]
  3. Carbohydr Polym. 2014 Nov 26;113:365-72 [PMID: 25256496]
  4. Int J Biol Macromol. 2022 Sep 30;217:303-311 [PMID: 35839950]
  5. Int J Biol Macromol. 2019 Oct 15;139:1224-1231 [PMID: 31421168]
  6. Polymers (Basel). 2020 Jul 10;12(7): [PMID: 32664338]
  7. Carbohydr Polym. 2018 Oct 15;198:529-536 [PMID: 30093031]
  8. Carbohydr Polym. 2022 Sep 1;291:119561 [PMID: 35698387]
  9. Int J Biol Macromol. 2022 Apr 15;204:677-684 [PMID: 35181327]
  10. Carbohydr Polym. 2018 Jan 1;179:228-243 [PMID: 29111047]
  11. Carbohydr Polym. 2015 Jul 10;125:16-25 [PMID: 25857955]
  12. Int J Biol Macromol. 2018 Feb;107(Pt B):2234-2241 [PMID: 29051095]
  13. Int J Biol Macromol. 2018 Jul 15;114:529-535 [PMID: 29601876]
  14. Int J Biol Macromol. 2019 Sep 15;137:160-168 [PMID: 31255623]
  15. Int J Biol Macromol. 2019 Aug 1;134:516-526 [PMID: 31063782]
  16. Int J Biol Macromol. 2021 May 1;178:306-315 [PMID: 33652047]
  17. Polymers (Basel). 2021 Aug 24;13(17): [PMID: 34502882]
  18. J Microbiol. 2008 Oct;46(5):535-41 [PMID: 18974955]
  19. Int J Biol Macromol. 2016 May;86:681-9 [PMID: 26836614]
  20. Probiotics Antimicrob Proteins. 2012 Dec;4(4):227-37 [PMID: 26782182]
  21. Int J Biol Macromol. 2020 Jan 1;142:73-84 [PMID: 31525416]
  22. Int J Biol Macromol. 2019 Sep 15;137:1-7 [PMID: 31252008]
  23. Int J Biol Macromol. 2019 Dec 1;141:21-28 [PMID: 31473313]
  24. Int J Biol Macromol. 2020 Oct 15;161:1181-1188 [PMID: 32561282]
  25. Carbohydr Polym. 2016 Aug 1;146:368-75 [PMID: 27112886]
  26. Int J Biol Macromol. 2020 Sep 15;159:630-639 [PMID: 32439434]
  27. Front Microbiol. 2023 Jun 27;14:1210302 [PMID: 37440877]
  28. Int J Biol Macromol. 2022 Mar 1;200:293-302 [PMID: 35016972]
  29. J Biosci Bioeng. 2018 Dec;126(6):769-777 [PMID: 30042003]
  30. Int J Food Sci Nutr. 2014 Sep;65(6):686-91 [PMID: 24827499]
  31. Carbohydr Polym. 2014 Jun 15;106:384-92 [PMID: 24721093]
  32. Bioresour Technol. 2023 Dec;390:129863 [PMID: 37839647]
  33. Food Chem. 2020 Dec 15;333:127418 [PMID: 32653680]
  34. Int J Biol Macromol. 2020 Jan 15;143:797-805 [PMID: 31715230]
  35. Indian J Microbiol. 2012 Mar;52(1):3-12 [PMID: 23449986]
  36. Microbiology (Reading). 2007 May;153(Pt 5):1566-1572 [PMID: 17464071]
  37. Int J Biol Macromol. 2020 Aug 15;157:220-231 [PMID: 32344080]
  38. Anal Biochem. 1969 Nov;32(2):314-21 [PMID: 5396941]
  39. PLoS One. 2014 Dec 08;9(12):e114591 [PMID: 25485629]
  40. Carbohydr Polym. 2019 Mar 1;207:218-223 [PMID: 30600002]
  41. World J Microbiol Biotechnol. 2019 Apr 22;35(5):68 [PMID: 31011829]
  42. Int J Biol Macromol. 2013 Jan;52:125-32 [PMID: 23046923]
  43. Int J Biol Macromol. 2017 Oct;103:1173-1184 [PMID: 28551435]

Word Cloud

Created with Highcharts 10.0.0EPSEPSsHDE-8structurespectroscopyfoodstrainisolatedfermentationexopolysaccharide1NMRSEMcompositionα-analysisshowedmilkcoagulationhomemadelonganbrothyield25g/LpurifiedcharacterizedusingvarioustechniquesincludingX-raydiffractionXRDnuclearmagneticresonanceFourier-transforminfraredFT-IRhigh-performancesizeexclusionchromatographyHPSECscanningelectronmicroscopymonosaccharideglucosemolecularweightMw7×10Darevealedconsisted-glucosepyranoselinked1→41→6bondsirregularsheet-likePhysicochemicaldemonstratedexhibitexcellentthermalstabilityhighviscositymakingsuitableheat-processedacidicfoodsAdditionallytestspresencepromotessupplementedsucrosesuggestswide-rangingpotentialapplicationsadditivesimprovingtexturetastedairyproductsstudyprovidespracticalguidancecommercialuserelatedindustriesExplorationExopolysaccharideHDE-8:UnveilingStructureBioactivityFoodIndustryApplicationsLeuconostocmesenteroidesapplicationphysicochemical

Similar Articles

Cited By