Improving the Efficiency of Viability-qPCR with Lactic Acid Enhancer for the Selective Detection of Live Pathogens in Foods.

Laura-Dorina Dinu, Quthama Jasim Al-Zaidi, Adelina Georgiana Matache, Florentina Matei
Author Information
  1. Laura-Dorina Dinu: Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania. ORCID
  2. Quthama Jasim Al-Zaidi: Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania.
  3. Adelina Georgiana Matache: Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania.
  4. Florentina Matei: Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania. ORCID

Abstract

Pathogenic are the most prevalent foodborne bacteria, and their accurate detection in food samples is critical for ensuring food safety. Therefore, a quick technique named viability-qPCR (v-qPCR), which is based on the ability of a selective dye, such as propidium monoazide (PMA), to differentiate between alive and dead cells, has been developed. Despite diverse, successful applications, v-qPCR is impaired by some practical limitations, including the ability of PMA to penetrate the outer membrane of dead Gram-negative bacteria. The objective of this study is to evaluate the ability of lactic acid (LA) to improve PMA penetration and, thus, the efficiency of v-qPCR in detecting the live fraction of pathogens. The pre-treatment of ATCC 8739 cells with 10 mM LA greatly increased PMA penetration into dead cells compared to conventional PMA-qPCR assay, avoiding false positive results. The limit of detection when using LA-PMA qPCR is 1% viable cells in a mixture of dead and alive cells. The optimized LA-PMA qPCR method was reliably able to detect log 2 CFU/mL culturable in milk spiked with viable and non-viable bacteria. lactic acid is cheap, has low toxicity, and can be used to improve the efficiency of the v-qPCR assay, which is economically interesting for larger-scale pathogen detection applications intended for food matrices.

Keywords

References

  1. Int J Food Microbiol. 2021 Jul 2;349:109233 [PMID: 34022616]
  2. Appl Environ Microbiol. 2007 Dec;73(24):8028-31 [PMID: 17933922]
  3. Front Cell Infect Microbiol. 2022 Feb 01;12:794323 [PMID: 35178354]
  4. Appl Environ Microbiol. 2021 Feb 12;87(5):e0265320 [PMID: 33361365]
  5. Front Microbiol. 2017 Dec 07;8:2416 [PMID: 29270157]
  6. J Microbiol Methods. 2014 Mar;98:89-93 [PMID: 24445114]
  7. J Microbiol Methods. 2009 Nov;79(2):184-8 [PMID: 19733199]
  8. Front Bioeng Biotechnol. 2020 May 05;8:381 [PMID: 32432092]
  9. Front Microbiol. 2022 Feb 15;13:774184 [PMID: 35242114]
  10. J Microbiol Methods. 2011 May;85(2):164-9 [PMID: 21324348]
  11. Int J Food Microbiol. 2012 Oct 01;159(2):115-21 [PMID: 23072696]
  12. Appl Environ Microbiol. 2005 Feb;71(2):1018-24 [PMID: 15691961]
  13. J Dairy Sci. 2018 Jun;101(6):4936-4943 [PMID: 29605335]
  14. Front Microbiol. 2022 Apr 25;13:801961 [PMID: 35547143]
  15. J Microbiol Methods. 2006 Nov;67(2):310-20 [PMID: 16753236]
  16. J Environ Health Sci Eng. 2019 Mar 7;17(1):407-416 [PMID: 31297217]
  17. J Microbiol Methods. 2013 Apr;93(1):20-4 [PMID: 23389080]
  18. Curr Opin Food Sci. 2021 Jun;39:152-159 [PMID: 34178607]
  19. Nat Rev Microbiol. 2021 Jan;19(1):37-54 [PMID: 32826992]
  20. J Microbiol Methods. 2022 Aug;199:106537 [PMID: 35798134]
  21. Food Environ Virol. 2019 Mar;11(1):40-51 [PMID: 30680674]
  22. Sci Total Environ. 2021 Nov 25;797:149085 [PMID: 34293609]
  23. Appl Environ Microbiol. 2007 Aug;73(16):5111-7 [PMID: 17586667]
  24. Environ Sci Technol. 2015 Dec 15;49(24):14249-56 [PMID: 26512952]
  25. Appl Environ Microbiol. 2000 May;66(5):2001-5 [PMID: 10788373]
  26. Appl Environ Microbiol. 2006 Jul;72(7):4695-703 [PMID: 16820461]
  27. Appl Environ Microbiol. 2011 Jul;77(13):4329-35 [PMID: 21602375]
  28. Appl Microbiol Biotechnol. 2018 Apr;102(7):3267-3285 [PMID: 29460001]
  29. Biomol Biomed. 2023 Jul 03;23(4):640-648 [PMID: 36724017]
  30. J Food Sci Technol. 2023 Apr;60(4):1274-1283 [PMID: 36936116]
  31. Front Microbiol. 2016 Nov 22;7:1833 [PMID: 27920757]
  32. J Appl Microbiol. 2009 Nov;107(5):1719-28 [PMID: 19457030]
  33. Food Microbiol. 2011 Dec;28(8):1478-82 [PMID: 21925032]
  34. Front Microbiol. 2022 Sep 07;13:984506 [PMID: 36160254]
  35. BMC Microbiol. 2018 Oct 11;18(1):132 [PMID: 30309323]
  36. J Dairy Sci. 2019 Aug;102(8):6914-6919 [PMID: 31202653]
  37. J Dairy Sci. 2017 Nov;100(11):8804-8813 [PMID: 28865862]
  38. Foods. 2021 Mar 30;10(4): [PMID: 33808357]
  39. Sci Rep. 2022 Mar 19;12(1):4769 [PMID: 35306522]

Word Cloud

Created with Highcharts 10.0.0PMAcellsdetectionfoodv-qPCRdeadbacteriaabilityacidviablepropidiummonoazidealiveapplicationslacticLAimprovepenetrationefficiencypathogensassayLA-PMAqPCRLacticPathogenicprevalentfoodborneaccuratesamplescriticalensuringsafetyThereforequicktechniquenamedviability-qPCRbasedselectivedyedifferentiatedevelopedDespitediversesuccessfulimpairedpracticallimitationsincludingpenetrateoutermembraneGram-negativeobjectivestudyevaluatethusdetectinglivefractionpre-treatmentATCC873910mMgreatlyincreasedcomparedconventionalPMA-qPCRavoidingfalsepositiveresultslimitusing1%mixtureoptimizedmethodreliablyabledetectlog2CFU/mLculturablemilkspikednon-viablecheaplowtoxicitycanusedeconomicallyinterestinglarger-scalepathogenintendedmatricesImprovingEfficiencyViability-qPCRAcidEnhancerSelectiveDetectionLivePathogensFoodsmatrixquantitativePCR

Similar Articles

Cited By

No available data.