Incorporating testing volume into estimation of effective reproduction number dynamics.

Isaac H Goldstein, Jon Wakefield, Volodymyr M Minin
Author Information
  1. Isaac H Goldstein: Department of Statistics, University of California, Irvine, CA, USA.
  2. Jon Wakefield: Departments of Biostatistics and Statistics, University of Washington, Seattle, WA, USA.
  3. Volodymyr M Minin: Department of Statistics, University of California, Irvine, CA, USA. ORCID

Abstract

Branching process inspired models are widely used to estimate the effective reproduction number-a useful summary statistic describing an infectious disease outbreak-using counts of new cases. Case data is a real-time indicator of changes in the reproduction number, but is challenging to work with because cases fluctuate due to factors unrelated to the number of new infections. We develop a new model that incorporates the number of diagnostic tests as a surveillance model covariate. Using simulated data and data from the SARS-CoV-2 pandemic in California, we demonstrate that incorporating tests leads to improved performance over the state of the art.

Keywords

References

  1. Euro Surveill. 2020 Apr;25(17): [PMID: 32372755]
  2. J R Stat Soc Ser A Stat Soc. 2022 Nov;185(Suppl 1):S86-S95 [PMID: 38607865]
  3. Am J Epidemiol. 2004 Sep 15;160(6):509-16 [PMID: 15353409]
  4. PLoS One. 2007 Aug 22;2(8):e758 [PMID: 17712406]
  5. Elife. 2022 Aug 01;11: [PMID: 35913120]
  6. PLoS Comput Biol. 2020 Dec 10;16(12):e1008409 [PMID: 33301457]
  7. Epidemics. 2019 Dec;29:100356 [PMID: 31624039]
  8. Commun Phys. 2023;6(1):146 [PMID: 38665405]
  9. Philos Trans R Soc Lond B Biol Sci. 2021 Jul 19;376(1829):20200283 [PMID: 34053260]
  10. Epidemics. 2022 Sep;40:100624 [PMID: 36075125]
  11. Proc Biol Sci. 2015 Dec 22;282(1821):20152026 [PMID: 26674948]
  12. PLoS Comput Biol. 2021 Sep 7;17(9):e1009347 [PMID: 34492011]
  13. Lancet Infect Dis. 2022 May;22(5):603-610 [PMID: 35176230]
  14. Clin Infect Dis. 2022 May 3;74(9):1678-1681 [PMID: 34453527]
  15. Nature. 2020 Aug;584(7820):257-261 [PMID: 32512579]
  16. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33361331]
  17. PLOS Digit Health. 2022 Jun 27;1(6):e0000052 [PMID: 36812522]
  18. J Math Biol. 2023 Aug 1;87(2):35 [PMID: 37526739]
  19. J R Stat Soc Ser A Stat Soc. 2022 Nov;185(Suppl 1):S65-S85 [PMID: 38607892]
  20. Math Biosci. 2007 Jul;208(1):300-11 [PMID: 17174352]
  21. Elife. 2022 Aug 08;11: [PMID: 35938911]
  22. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  23. Biometrics. 2022 Dec;78(4):1530-1541 [PMID: 34374071]

Grants

  1. R01 AI029168/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0numberreproductionnewdataeffectiveinfectiouscasesmodeltestsBranchingprocessinspiredmodelswidelyusedestimatenumber-ausefulsummarystatisticdescribingdiseaseoutbreak-usingcountsCasereal-timeindicatorchangeschallengingworkfluctuateduefactorsunrelatedinfectionsdevelopincorporatesdiagnosticsurveillancecovariateUsingsimulatedSARS-CoV-2pandemicCaliforniademonstrateincorporatingleadsimprovedperformancestateartIncorporatingtestingvolumeestimationdynamicsBayesianinferenceCOVID-19diseasesnowcasting

Similar Articles

Cited By