First-Principles Studies of the Electronic and Optical Properties of Zinc Titanium Nitride: The Role of Cation Disorder.

Sijia Ke, John S Mangum, Andriy Zakutayev, Ann L Greenaway, Jeffrey B Neaton
Author Information
  1. Sijia Ke: Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States. ORCID
  2. John S Mangum: Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  3. Andriy Zakutayev: Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  4. Ann L Greenaway: Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  5. Jeffrey B Neaton: Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.

Abstract

cation disorder is an established feature of heterovalent ternary nitrides, a promising class of semiconductor materials. A recently synthesized wurtzite-family ternary nitride, ZnTiN, shows potential for durable photoelectrochemical applications with a measured optical absorption onset of 2 eV, which is 1.4 eV lower than previously predicted, a large difference attributed to cation disorder. Here, we use first-principles calculations based on density functional theory to establish the role of cation disorder in the electronic and optical properties of ZnTiN. We compute antisite defect arrangement formation energies for one hundred 128-atom supercells and analyze their trends and their effect on electronic structures, rationalizing experimental results. We demonstrate that charge imbalance created by antisite defects in Ti and N local environments, respectively, broadens the conduction and valence bands near the band edges, reducing the band gap relative to the cation-ordered limit, a general mechanism relevant to other multivalent ternary nitrides. Charge-imbalanced antisite defect arrangements that lead to N-centered tetrahedral motifs fully coordinated by Zn are the most energetically costly and introduce localized in-gap states; cation arrangements that better preserve local charge balance have smaller formation energies and have less impact on the electronic structure. Our work provides insights into the nature of cation disorder in the newly synthesized semiconductor ZnTiN, with implications for its performance in energy applications, and provides a baseline for the future study of controlling cation order in ZnTiN and other ternary nitrides.

References

  1. J Am Chem Soc. 2022 Aug 3;144(30):13673-13687 [PMID: 35857885]
  2. Phys Rev Lett. 2002 Sep 9;89(11):117602 [PMID: 12225169]
  3. Adv Mater. 2014 Jan 15;26(2):311-5 [PMID: 24403116]
  4. J Chem Phys. 2004 Feb 1;120(5):2105-9 [PMID: 15268348]
  5. J Phys Condens Matter. 2017 Oct 24;29(46):465901 [PMID: 29064822]
  6. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 [PMID: 9984901]
  7. Proc Natl Acad Sci U S A. 2021 Aug 24;118(34): [PMID: 34417292]
  8. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 [PMID: 9976227]
  9. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  10. J Phys Condens Matter. 2021 Jul 08;33(35): [PMID: 33887709]
  11. Nat Mater. 2019 Jul;18(7):732-739 [PMID: 31209391]
  12. J Am Chem Soc. 2020 May 6;142(18):8421-8430 [PMID: 32279492]
  13. J Am Chem Soc. 2018 Mar 28;140(12):4293-4301 [PMID: 29494134]
  14. Phys Rev Lett. 1990 Jul 16;65(3):353-356 [PMID: 10042897]
  15. Nat Commun. 2016 Jun 21;7:11962 [PMID: 27325228]
  16. J Chem Phys. 2006 Dec 14;125(22):224106 [PMID: 17176133]
  17. Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 [PMID: 10004490]
  18. Sci Rep. 2016 Apr 26;6:24924 [PMID: 27114185]
  19. Adv Sci (Weinh). 2017 Mar 03;4(8):1600517 [PMID: 28852614]
  20. Phys Rev Lett. 1986 Jun 2;56(22):2415-2418 [PMID: 10032980]
  21. J Phys Condens Matter. 2009 Sep 30;21(39):395502 [PMID: 21832390]

Word Cloud

Created with Highcharts 10.0.0cationdisorderternaryZnTiNnitrideselectronicantisiteCationsemiconductorsynthesizedapplicationsopticaleVdefectformationenergieschargelocalbandarrangementsprovidesestablishedfeatureheterovalentpromisingclassmaterialsrecentlywurtzite-familynitrideshowspotentialdurablephotoelectrochemicalmeasuredabsorptiononset214lowerpreviouslypredictedlargedifferenceattributedusefirst-principlescalculationsbaseddensityfunctionaltheoryestablishrolepropertiescomputearrangementonehundred128-atomsupercellsanalyzetrendseffectstructuresrationalizingexperimentalresultsdemonstrateimbalancecreateddefectsTiNenvironmentsrespectivelybroadensconductionvalencebandsnearedgesreducinggaprelativecation-orderedlimitgeneralmechanismrelevantmultivalentCharge-imbalancedleadN-centeredtetrahedralmotifsfullycoordinatedZnenergeticallycostlyintroducelocalizedin-gapstatesbetterpreservebalancesmallerlessimpactstructureworkinsightsnaturenewlyimplicationsperformanceenergybaselinefuturestudycontrollingorderFirst-PrinciplesStudiesElectronicOpticalPropertiesZincTitaniumNitride:RoleDisorder

Similar Articles

Cited By