Boom-bust population dynamics drive rapid genetic change.

Emily J Stringer, Bernd Gruber, Stephen D Sarre, Glenda M Wardle, Scott V Edwards, Christopher R Dickman, Aaron C Greenville, Richard P Duncan
Author Information
  1. Emily J Stringer: Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra ACT 2617, Australia. ORCID
  2. Bernd Gruber: Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra ACT 2617, Australia.
  3. Stephen D Sarre: Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra ACT 2617, Australia. ORCID
  4. Glenda M Wardle: Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia. ORCID
  5. Scott V Edwards: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138. ORCID
  6. Christopher R Dickman: Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia. ORCID
  7. Aaron C Greenville: Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia.
  8. Richard P Duncan: Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra ACT 2617, Australia. ORCID

Abstract

Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse () experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation () increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.

Keywords

References

  1. Mol Ecol. 2010 Jul;19(13):2800-12 [PMID: 20561198]
  2. Mol Ecol. 2022 Apr;31(8):2281-2292 [PMID: 35178809]
  3. Genetics. 1997 May;146(1):427-41 [PMID: 9136031]
  4. BMC Evol Biol. 2016 Nov 8;16(1):240 [PMID: 27825303]
  5. Science. 2017 Aug 04;357(6350):495-498 [PMID: 28774927]
  6. Ecol Evol. 2020 Feb 11;10(4):1929-1937 [PMID: 32128126]
  7. Sci Total Environ. 2022 Nov 10;846:157480 [PMID: 35868391]
  8. Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723): [PMID: 28483875]
  9. Proc Biol Sci. 2017 Feb 8;284(1848): [PMID: 28148745]
  10. Math Biosci. 2014 Dec;258:113-33 [PMID: 25445736]
  11. Proc Biol Sci. 2014 Nov 7;281(1794):20141369 [PMID: 25253456]
  12. Biol Rev Camb Philos Soc. 2010 Aug;85(3):501-21 [PMID: 20015313]
  13. G3 (Bethesda). 2012 Nov;2(11):1405-13 [PMID: 23173092]
  14. Mol Biol Evol. 2019 Dec 1;36(12):2906-2921 [PMID: 31424552]
  15. Mol Ecol. 2006 Aug;15(9):2665-76 [PMID: 16842435]
  16. PLoS One. 2012;7(8):e42649 [PMID: 22905157]
  17. Nat Genet. 2015 May;47(5):555-9 [PMID: 25848749]
  18. Mol Ecol. 2017 Mar;26(5):1211-1224 [PMID: 28099771]
  19. Mol Ecol. 2008 Jan;17(1):20-9 [PMID: 18173498]
  20. Genetics. 1943 Mar;28(2):114-38 [PMID: 17247074]
  21. Mol Ecol Resour. 2008 Jul;8(4):753-6 [PMID: 21585883]
  22. Mol Ecol Resour. 2022 Oct;22(7):2599-2613 [PMID: 35593534]
  23. Mol Ecol. 2014 Jul;23(13):3133-57 [PMID: 24845075]
  24. Evol Appl. 2019 Jun 05;12(8):1505-1512 [PMID: 31462910]
  25. Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2320590121 [PMID: 38621118]
  26. Mol Ecol. 2013 Jun;22(11):3179-90 [PMID: 23551379]
  27. Genetics. 1931 Mar;16(2):97-159 [PMID: 17246615]
  28. Evolution. 1975 Mar;29(1):1-10 [PMID: 28563291]
  29. Nature. 2018 Aug;560(7716):88-91 [PMID: 30046104]
  30. Ecol Evol. 2021 Aug 13;11(17):11890-11902 [PMID: 34522348]
  31. Evol Appl. 2021 Oct 08;14(11):2664-2679 [PMID: 34815746]
  32. Ecol Evol. 2012 Jul;2(7):1491-502 [PMID: 22957157]
  33. Mol Biol Evol. 1998 May;15(5):538-43 [PMID: 9580982]
  34. Mol Ecol Resour. 2014 Jan;14(1):209-14 [PMID: 23992227]
  35. Biol Rev Camb Philos Soc. 2014 May;89(2):493-510 [PMID: 24779519]
  36. Mol Ecol Resour. 2024 Jan;24(1):e13879 [PMID: 37873672]
  37. Ecology. 2020 Dec;101(12):e03175 [PMID: 32860227]
  38. J Evol Biol. 2020 May;33(5):668-681 [PMID: 32052525]
  39. Nat Commun. 2019 Sep 6;10(1):4053 [PMID: 31492841]
  40. Oecologia. 1994 Sep;99(3-4):216-225 [PMID: 28313875]
  41. Proc Biol Sci. 2013 Apr 24;280(1761):20130486 [PMID: 23615287]
  42. Mol Ecol. 2023 Dec;32(24):6766-6776 [PMID: 37873908]
  43. Ecol Evol. 2012 Nov;2(11):2645-58 [PMID: 23170202]
  44. Mol Ecol. 2021 Oct;30(20):4991-5008 [PMID: 34379852]
  45. Biol Rev Camb Philos Soc. 2017 May;92(2):647-664 [PMID: 26685752]
  46. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  47. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4531-40 [PMID: 25675493]
  48. Mol Ecol Resour. 2013 Sep;13(5):946-52 [PMID: 23738873]
  49. Genome Biol. 2020 Nov 17;21(1):280 [PMID: 33203475]
  50. Mol Ecol Resour. 2018 May;18(3):691-699 [PMID: 29266847]
  51. J Anim Ecol. 2019 Oct;88(10):1549-1563 [PMID: 31310340]
  52. Evol Appl. 2010 May;3(3):244-62 [PMID: 25567922]

Grants

  1. DP180103844/Australian Research Council
  2. n/a/Research Training Program, University of Canberra

MeSH Term

Animals
Mice
Australia
Population Dynamics
Genotype
Mammals
Heterozygote
Marsupialia
Genetic Variation
Genetics, Population

Word Cloud

Created with Highcharts 10.0.0populationgeneticdiversityheterozygosityspeciesdeclinesrapidfluctuationsenvironmentallosspopulationsenvironmentsaridzonerepeatedtwosmalldynamicshighlyvariabledesertboomsstablesizesconservedIncreasingthreatsextremeperturbationsplaceriskassociatedevolutionarypotentialtheoryshowscancauselikeAustralia'srepeatedlysubjectmajoryetpersistappearablemaintainusesampling13ygenotype-by-sequencing1903individualsinvestigateconsequencesmammalsAustraliansandyinlandmouseexperiencesmarkedboom-bustresponseenvironmentshowlevelsdeclineddifferentiationincreasedbustperiodsbecameisolatedrapidlyrestoredepisodiccontrastlesserhairy-footeddunnartmarsupialmaintainsrelativelyshowedlinearresultsrevealcontrastingwaysmaintainedonemaintenanceacrosstimemixingrestoreslostbustsBoom-bustdrivechangecontemporaryevolutiongeneticssinglenucleotidepolymorphisms

Similar Articles

Cited By