Glycerol waste to value added products and its potential applications.

Chaitanya Reddy Chilakamarry, A M Mimi Sakinah, A W Zularisam, Ashok Pandey
Author Information
  1. Chaitanya Reddy Chilakamarry: Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300.
  2. A M Mimi Sakinah: Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300.
  3. A W Zularisam: Faculty of Civil Engineering Technology , Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300.
  4. Ashok Pandey: Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001 India.

Abstract

The rapid industrial and economic development runs on fossil fuel and other energy sources. Limited oil reserves, environmental issues, and high transportation costs lead towards carbon unbiased renewable and sustainable fuel. Compared to other carbon-based fuels, biodiesel is attracted worldwide as a biofuel for the reduction of global dependence on fossil fuels and the greenhouse effect. During biodiesel production, approximately 10% of glycerol is formed in the transesterification process in a biodiesel plant. The ditching of crude glycerol is important as it contains salt, free fatty acids, and methanol that cause contamination of soil and creates environmental challenges for researchers. However, the excessive cost of crude glycerol refining and market capacity encourage the biodiesel industries for developing a new idea for utilising and produced extra sources of income and treat biodiesel waste. This review focuses on the significance of crude glycerol in the value-added utilisation and conversion to bioethanol by a fermentation process and describes the opportunities of glycerol in various applications.
Graphic abstract:

Keywords

References

  1. J Ind Microbiol Biotechnol. 2013 Feb;40(2):227-33 [PMID: 23296976]
  2. Appl Microbiol Biotechnol. 2010 Feb;85(6):1713-33 [PMID: 20033403]
  3. Biotechnol Biofuels. 2012 Mar 14;5:13 [PMID: 22413907]
  4. Bioresour Technol. 2019 Sep;288:121530 [PMID: 31130345]
  5. Biotechnol Lett. 2011 Oct;33(10):1973-83 [PMID: 21691839]
  6. Int J Biol Macromol. 2015;78:9-16 [PMID: 25840150]
  7. Bioresour Technol. 2021 Mar;323:124565 [PMID: 33360115]
  8. Bioresour Technol. 2013 Apr;133:38-44 [PMID: 23428814]
  9. Waste Manag. 2010 Oct;30(10):1849-53 [PMID: 20434322]
  10. Molecules. 2019 Dec 12;24(24): [PMID: 31842291]
  11. Obes Rev. 2021 Mar;22 Suppl 2:e13197 [PMID: 33471425]
  12. Biosci Biotechnol Biochem. 2018 Mar;82(3):532-539 [PMID: 29338575]
  13. Biotechnol Lett. 2014 Jan;36(1):57-62 [PMID: 24078128]
  14. Appl Biochem Biotechnol. 2018 Oct;186(2):400-413 [PMID: 29644593]
  15. Microbiol Res. 2015 Feb;171:1-7 [PMID: 25644946]
  16. Bioresour Technol. 2009 Apr;100(8):2452-6 [PMID: 19128964]
  17. Biosci Biotechnol Biochem. 2009 Aug;73(8):1799-805 [PMID: 19661679]
  18. Microbiome. 2020 Sep 16;8(1):134 [PMID: 32938501]
  19. Metab Eng. 2015 Jan;27:46-56 [PMID: 25447642]
  20. Bioresour Technol. 2016 Sep;215:144-154 [PMID: 27004448]
  21. Metab Eng. 2019 Dec;56:181-189 [PMID: 31600571]
  22. Braz J Microbiol. 2012 Apr;43(2):506-16 [PMID: 24031858]
  23. Microb Cell Fact. 2020 Jan 13;19(1):6 [PMID: 31931797]
  24. J Agric Food Chem. 2009 Apr 8;57(7):2739-44 [PMID: 19265450]
  25. Bioprocess Biosyst Eng. 2021 Mar;44(3):617-625 [PMID: 33131002]
  26. Bioresour Technol. 2011 Feb;102(4):3918-22 [PMID: 21186120]
  27. Microb Cell Fact. 2018 Jun 15;17(1):92 [PMID: 29907119]
  28. Appl Microbiol Biotechnol. 2011 Feb;89(4):1255-64 [PMID: 21212944]
  29. Zentralbl Mikrobiol. 1991;146(3):181-4 [PMID: 2068872]
  30. Bioresour Technol. 2019 Jan;271:340-344 [PMID: 30292133]
  31. Bioresour Technol. 2013 Dec;149:333-40 [PMID: 24125798]
  32. Bioresour Technol. 2010 Jun;101(11):4157-61 [PMID: 20149645]
  33. Biotechnol Adv. 2019 Nov 1;37(6):107395 [PMID: 31071430]
  34. Biotechnol Bioeng. 2015 Apr;112(4):827-31 [PMID: 25335774]
  35. Appl Microbiol Biotechnol. 2002 Mar;58(3):275-85 [PMID: 11935176]
  36. Sci Total Environ. 2020 Feb 25;705:135137 [PMID: 31846815]
  37. ACS Omega. 2021 Feb 01;6(6):4137-4146 [PMID: 33644536]
  38. Bioresour Technol. 2012 Jan;104:579-86 [PMID: 22093973]
  39. Biotechnol Biofuels. 2017 Jul 4;10:173 [PMID: 28680480]
  40. Sci Total Environ. 2020 Mar 20;709:136206 [PMID: 31905567]
  41. Metabol Open. 2021 Feb 26;9:100086 [PMID: 33733082]
  42. Ann Microbiol. 2014;64:891-898 [PMID: 25100926]
  43. Metab Eng. 2006 Nov;8(6):578-86 [PMID: 16931085]
  44. ChemSusChem. 2008;1(10):809-12 [PMID: 18773410]
  45. Bioresour Technol. 2010 Oct;101(19):7581-6 [PMID: 20478702]
  46. RSC Adv. 2019 Apr 12;9(21):11614-11620 [PMID: 35517023]
  47. Biotechnol Adv. 2009 Nov-Dec;27(6):895-913 [PMID: 19664701]
  48. N Biotechnol. 2017 Oct 25;39(Pt A):22-28 [PMID: 28587886]
  49. Bioresour Technol. 2020 Feb;297:122402 [PMID: 31761627]
  50. Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Feb;1866(2):158858 [PMID: 33279658]
  51. Bioresour Technol. 2017 Nov;244(Pt 1):575-581 [PMID: 28803108]
  52. Front Bioeng Biotechnol. 2021 Feb 15;9:626639 [PMID: 33659240]
  53. Bioresour Technol. 2010 Nov;101(22):8902-6 [PMID: 20620054]
  54. Appl Microbiol Biotechnol. 2007 Jan;73(5):1017-24 [PMID: 16960737]
  55. 3 Biotech. 2021 May;11(5):220 [PMID: 33968565]
  56. Chem Soc Rev. 2020 Jul 21;49(14):4615-4636 [PMID: 32567619]
  57. Mol Ecol. 2021 Mar;30(5):1322-1335 [PMID: 33411382]
  58. Bioresour Technol. 2015 Jan;175:374-81 [PMID: 25459845]
  59. Appl Microbiol Biotechnol. 2011 Nov;92(3):519-27 [PMID: 21656140]
  60. J Ind Microbiol Biotechnol. 2004 Oct;31(9):442-6 [PMID: 15378388]
  61. J Bacteriol. 2000 Sep;182(18):5238-50 [PMID: 10960111]
  62. Bioresour Technol. 2018 Feb;249:612-619 [PMID: 29091845]
  63. Braz J Microbiol. 2021 Jun;52(2):715-726 [PMID: 33590449]
  64. Appl Environ Microbiol. 2009 Sep;75(18):5871-83 [PMID: 19617389]
  65. Macromol Rapid Commun. 2021 Feb;42(3):e2000530 [PMID: 33433958]
  66. Angew Chem Int Ed Engl. 2004 Feb 6;43(7):788-824 [PMID: 14767950]
  67. Biochimie. 1993;75(12):1077-81 [PMID: 8199242]
  68. Front Chem. 2020 Feb 11;8:69 [PMID: 32117892]
  69. Appl Microbiol Biotechnol. 2020 Nov;104(21):9179-9191 [PMID: 32997204]
  70. Bioresour Technol. 2011 Nov;102(22):10436-40 [PMID: 21930373]
  71. J Biosci Bioeng. 2012 Oct;114(4):453-6 [PMID: 22627051]
  72. Biotechnol Prog. 2021 Jan;37(1):e3077 [PMID: 32894656]
  73. PLoS One. 2018 Oct 15;13(10):e0205572 [PMID: 30321211]
  74. Appl Biochem Biotechnol. 2016 Jul;179(6):1073-100 [PMID: 27033090]
  75. Biotechnol Bioeng. 2009 Dec 1;104(5):965-72 [PMID: 19572314]
  76. Int J Sport Nutr Exerc Metab. 2021 Jan 20;31(2):143-153 [PMID: 33477110]
  77. Bioresour Technol. 2010 Sep;101(17):6745-50 [PMID: 20381345]

Word Cloud

Created with Highcharts 10.0.0glycerolbiodieselcrudefossilfuelsourcesenvironmentalfuelsprocesswasteapplicationsproductsrapidindustrialeconomicdevelopmentrunsenergyLimitedoilreservesissueshightransportationcostsleadtowardscarbonunbiasedrenewablesustainableComparedcarbon-basedattractedworldwidebiofuelreductionglobaldependencegreenhouseeffectproductionapproximately10%formedtransesterificationplantditchingimportantcontainssaltfreefattyacidsmethanolcausecontaminationsoilcreateschallengesresearchersHoweverexcessivecostrefiningmarketcapacityencourageindustriesdevelopingnewideautilisingproducedextraincometreatreviewfocusessignificancevalue-addedutilisationconversionbioethanolfermentationdescribesopportunitiesvariousGraphicabstract:GlycerolvalueaddedpotentialBioethanolBiofuelCrudeValuable

Similar Articles

Cited By (18)