ATP13A3 variants promote pulmonary arterial hypertension by disrupting polyamine transport.

Bin Liu, Mujahid Azfar, Ekaterina Legchenko, James A West, Shaun Martin, Chris Van den Haute, Veerle Baekelandt, John Wharton, Luke Howard, Martin R Wilkins, Peter Vangheluwe, Nicholas W Morrell, Paul D Upton
Author Information
  1. Bin Liu: Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK.
  2. Mujahid Azfar: Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium.
  3. Ekaterina Legchenko: Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK.
  4. James A West: Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK.
  5. Shaun Martin: Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium.
  6. Chris Van den Haute: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium.
  7. Veerle Baekelandt: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium.
  8. John Wharton: Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK.
  9. Luke Howard: Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK.
  10. Martin R Wilkins: Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK.
  11. Peter Vangheluwe: Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
  12. Nicholas W Morrell: Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK.
  13. Paul D Upton: Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK. ORCID

Abstract

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis.
METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels.
CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.

Keywords

References

  1. Biochim Biophys Acta Mol Cell Res. 2022 Dec;1869(12):119354 [PMID: 36064065]
  2. Am J Physiol Lung Cell Mol Physiol. 2004 Dec;287(6):L1241-7 [PMID: 15286002]
  3. PLoS One. 2015 Aug 28;10(8):e0134958 [PMID: 26317340]
  4. Nat Genet. 2000 Sep;26(1):81-4 [PMID: 10973254]
  5. Nat Commun. 2018 Apr 12;9(1):1416 [PMID: 29650961]
  6. Am J Physiol. 1984 Oct;247(4 Pt 2):H682-5 [PMID: 6437245]
  7. Cytokine. 1998 Jun;10(6):423-31 [PMID: 9632528]
  8. Nat Rev Mol Cell Biol. 2001 Mar;2(3):188-94 [PMID: 11265248]
  9. J Vis Exp. 2015 Dec 23;(106):e53384 [PMID: 26780290]
  10. J Appl Physiol (1985). 1987 Apr;62(4):1562-8 [PMID: 3110122]
  11. Circulation. 2008 Aug 12;118(7):722-30 [PMID: 18663089]
  12. Circulation. 2017 Jan 31;135(5):460-475 [PMID: 27881557]
  13. Toxicol Appl Pharmacol. 1985 Oct;81(1):91-9 [PMID: 3931300]
  14. Genome Med. 2019 Nov 14;11(1):69 [PMID: 31727138]
  15. Chembiochem. 2018 May 4;19(9):907-911 [PMID: 29451723]
  16. Biochem Pharmacol. 1984 Nov 15;33(22):3633-7 [PMID: 6439208]
  17. Sci Rep. 2022 Mar 8;12(1):4045 [PMID: 35260637]
  18. Sci Rep. 2019 Jan 24;9(1):753 [PMID: 30679663]
  19. Nat Med. 2015 Jul;21(7):777-85 [PMID: 26076038]
  20. Nat Rev Cardiol. 2020 Feb;17(2):85-95 [PMID: 31406341]
  21. PLoS One. 2018 Mar 5;13(3):e0193228 [PMID: 29505581]
  22. Am J Cancer Res. 2016 Jun 01;6(6):1231-52 [PMID: 27429841]
  23. Biochem Biophys Res Commun. 2004 Oct 22;323(3):731-8 [PMID: 15381061]
  24. Sci Transl Med. 2018 Apr 25;10(438): [PMID: 29695452]
  25. Am J Respir Cell Mol Biol. 2019 Jun;60(6):637-649 [PMID: 30562042]
  26. Am J Hum Genet. 2000 Sep;67(3):737-44 [PMID: 10903931]
  27. Biomolecules. 2023 Feb 09;13(2): [PMID: 36830711]
  28. Eur Respir J. 2019 Mar 14;53(3): [PMID: 30578397]
  29. Int J Mol Sci. 2016 Jun 22;17(6): [PMID: 27338373]
  30. Biochem Pharmacol. 1986 Feb 15;35(4):714-6 [PMID: 3947402]
  31. Pulm Circ. 2019 Nov 18;9(3):2045894019872192 [PMID: 31798832]
  32. Hum Mutat. 2011 Aug;32(8):956-64 [PMID: 21542062]
  33. J Biotechnol. 2014 Jan;169:71-81 [PMID: 24252659]
  34. J Biol Chem. 2016 Jul 15;291(29):14904-12 [PMID: 27268251]
  35. Eur Respir J. 2019 Jan 24;53(1): [PMID: 30545970]
  36. Am J Physiol Lung Cell Mol Physiol. 2000 Mar;278(3):L610-7 [PMID: 10710534]
  37. J Med Genet. 2022 Sep;59(9):906-911 [PMID: 34493544]
  38. J Biol Chem. 2021 Jan-Jun;296:100182 [PMID: 33310703]
  39. Am J Physiol Gastrointest Liver Physiol. 2005 Jun;288(6):G1159-69 [PMID: 15691870]
  40. Sci Adv. 2019 Dec 04;5(12):eaaw3851 [PMID: 31840053]
  41. Biochem Biophys Res Commun. 1995 Nov 13;216(2):708-14 [PMID: 7488168]
  42. Nat Rev Cardiol. 2016 Feb;13(2):106-20 [PMID: 26461965]
  43. Circulation. 2005 Jul 26;112(4):553-62 [PMID: 16027259]
  44. Nature. 2020 Feb;578(7795):419-424 [PMID: 31996848]

Grants

  1. /China Scholarship Council
  2. /Cambridge Trust International Scholarship
  3. /Great Britain-China Educational Trust
  4. /Henry Lester Trust and Leche Trust
  5. /Fonds voor Wetenschappelijk Onderzoek
  6. 1S77920N/Flanders
  7. /Marie Sklodowska-Curie Postdoctoral Research
  8. RG/13/4/30107/BHF Programme
  9. G094219N/FWO research
  10. C15/15/073/KU Leuven

MeSH Term

Animals
Humans
Mice
Apoptosis
Biological Transport
Cell Proliferation
Cells, Cultured
Disease Models, Animal
Endosomes
Endothelial Cells
Hypertension, Pulmonary
Mice, Inbred C57BL
Phenotype
Polyamines
Proton-Translocating ATPases
Pulmonary Arterial Hypertension
Pulmonary Artery
Membrane Transport Proteins
Adenosine Triphosphatases

Chemicals

Polyamines
Proton-Translocating ATPases
ATP13A3 protein, human
Membrane Transport Proteins
Adenosine Triphosphatases

Word Cloud

Created with Highcharts 10.0.0ATP13A3polyaminePAHECsECpulmonaryvariantvariantstransportfunctionhumanincreasedarterialhypertensionmiceloss-of-functionPAH-associateddeficiencyoverexpressionharbouringAtp13a3reducedhomeostasisdysfunctionAIMS:PotentialgeneencodingP5B-typeATPaseundefinedrecentlyidentifiedpatientsimplicatedfullyelucidatedstudysoughtdeterminebiologicalvascularendothelialcellsmaycontributediseasepathogenesisMETHODSANDRESULTS:studiedimpactmodels[humanbloodoutgrowthBOECsmicrovascular1]includingpatient-derivedBOEClineLK726Xalsogeneratedanalogousdisease-associatedestablishwhetherdeveloplocalizedrecyclingendosomesKnockdowngenerallybasalcontentalteredexpressionenzymesinvolvedmetabolismConverselywild-typeuptakeFunctionallylossassociatedproliferationapoptosisserumstarvationmonolayerpermeabilitythrombinassessmentfivemissenseL675VM850IV855MR858HL956PconfirmedphenotypesrepresentedimpaireddysregulatedFurthermorecarryingheterozygousgermlineframeshiftrepresentingspontaneouslydevelopedphenotypepressuresrightventricularremodellingmuscularizationvesselsCONCLUSION:identifytransportercontrollingleadspredisposessuggestsneedtargetedtherapiesalleviateimbalancespromotedisruptingPolyaminesPulmonary

Similar Articles

Cited By