A comprehensive review of the recent advances on predicting drug-target affinity based on deep learning.

Xin Zeng, Shu-Juan Li, Shuang-Qing Lv, Meng-Liang Wen, Yi Li
Author Information
  1. Xin Zeng: College of Mathematics and Computer Science, Dali University, Dali, China.
  2. Shu-Juan Li: Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.
  3. Shuang-Qing Lv: Institute of Surveying and Information Engineering West Yunnan University of Applied Science, Dali, China.
  4. Meng-Liang Wen: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
  5. Yi Li: College of Mathematics and Computer Science, Dali University, Dali, China.

Abstract

Accurate calculation of drug-target affinity (DTA) is crucial for various applications in the pharmaceutical industry, including drug screening, design, and repurposing. However, traditional machine learning methods for calculating DTA often lack accuracy, posing a significant challenge in accurately predicting DTA. Fortunately, deep learning has emerged as a promising approach in computational biology, leading to the development of various deep learning-based methods for DTA prediction. To support researchers in developing novel and highly precision methods, we have provided a comprehensive review of recent advances in predicting DTA using deep learning. We firstly conducted a statistical analysis of commonly used public datasets, providing essential information and introducing the used fields of these datasets. We further explored the common representations of sequences and structures of drugs and targets. These analyses served as the foundation for constructing DTA prediction methods based on deep learning. Next, we focused on explaining how deep learning models, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Transformer, and Graph Neural Networks (GNNs), were effectively employed in specific DTA prediction methods. We highlighted the unique advantages and applications of these models in the context of DTA prediction. Finally, we conducted a performance analysis of multiple state-of-the-art methods for predicting DTA based on deep learning. The comprehensive review aimed to help researchers understand the shortcomings and advantages of existing methods, and further develop high-precision DTA prediction tool to promote the development of drug discovery.

Keywords

References

  1. Bioinformatics. 2023 Sep 2;39(9): [PMID: 37688568]
  2. BMC Bioinformatics. 2022 Jun 8;23(1):222 [PMID: 35676617]
  3. J Chem Theory Comput. 2008 May 9;4(6):869-876 [PMID: 19936324]
  4. J Chem Inf Model. 2022 Sep 26;62(18):4380-4390 [PMID: 36054653]
  5. IEEE J Biomed Health Inform. 2023 Nov 20;PP: [PMID: 37983161]
  6. Methods. 2023 Dec;220:126-133 [PMID: 37952703]
  7. BMC Genomics. 2022 Jun 17;23(1):449 [PMID: 35715739]
  8. Bioinformatics. 2018 Sep 1;34(17):i821-i829 [PMID: 30423097]
  9. Bioinformatics. 2015 Mar 15;31(6):926-32 [PMID: 25398609]
  10. IEEE J Biomed Health Inform. 2023 Apr;27(4):2128-2137 [PMID: 37018115]
  11. Bioinformatics. 2018 Nov 1;34(21):3666-3674 [PMID: 29757353]
  12. Bioinformatics. 2023 Aug 1;39(8): [PMID: 37467066]
  13. Molecules. 2023 Dec 08;28(24): [PMID: 38138496]
  14. Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4 [PMID: 38082648]
  15. Math Biosci Eng. 2023 Jan;20(1):269-282 [PMID: 36650765]
  16. Comput Biol Med. 2023 Dec;167:107621 [PMID: 37907030]
  17. Bioinformatics. 2021 May 23;37(8):1140-1147 [PMID: 33119053]
  18. Comput Biol Med. 2022 Aug;147:105772 [PMID: 35777085]
  19. Comput Methods Programs Biomed. 2024 Feb;244:108003 [PMID: 38181572]
  20. Bioinformatics. 2020 Nov 1;36(17):4633-4642 [PMID: 32462178]
  21. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  22. RSC Adv. 2020 Jun 1;10(35):20701-20712 [PMID: 35517730]
  23. Methods. 2022 Nov;207:103-109 [PMID: 36155250]
  24. IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):852-863 [PMID: 35471889]
  25. Math Biosci Eng. 2021 Oct 25;18(6):9148-9162 [PMID: 34814340]
  26. J Enzyme Inhib Med Chem. 2016 Dec;31(6):1443-50 [PMID: 26888050]
  27. BMC Genomics. 2023 Sep 20;24(1):557 [PMID: 37730555]
  28. Int J Mol Sci. 2020 Nov 10;21(22): [PMID: 33182567]
  29. Comput Biol Med. 2023 Sep;164:107372 [PMID: 37597410]
  30. J Chem Inf Model. 2024 Apr 8;64(7):2205-2220 [PMID: 37319418]
  31. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  32. Comput Biol Med. 2023 Nov;166:107512 [PMID: 37788507]
  33. PeerJ. 2023 Dec 11;11:e16625 [PMID: 38099302]
  34. Comput Biol Chem. 2023 Dec;107:107971 [PMID: 37852036]
  35. Neural Netw. 2024 Jan;169:623-636 [PMID: 37976593]
  36. BMC Bioinformatics. 2023 Sep 7;24(1):334 [PMID: 37679724]
  37. J Mol Graph Model. 2021 Jun;105:107865 [PMID: 33640787]
  38. Int J Mol Sci. 2023 May 05;24(9): [PMID: 37176031]
  39. Int J Mol Sci. 2022 Jul 30;23(15): [PMID: 35955587]
  40. IEEE J Biomed Health Inform. 2024 Aug;28(8):4544-4552 [PMID: 38190664]
  41. BMC Bioinformatics. 2021 Nov 8;22(1):542 [PMID: 34749664]
  42. ACS Omega. 2019 Sep 16;4(14):15956-15965 [PMID: 31592466]
  43. IEEE J Biomed Health Inform. 2023 Dec;27(12):6112-6120 [PMID: 37703165]
  44. J Med Chem. 2005 Jun 16;48(12):4111-9 [PMID: 15943484]
  45. BMC Bioinformatics. 2022 Sep 7;23(1):367 [PMID: 36071406]
  46. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33834190]
  47. Bioinformatics. 2023 Nov 1;39(11): [PMID: 37812388]
  48. Curr Med Chem. 2021;28(11):2100-2113 [PMID: 32895036]
  49. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  50. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33866349]
  51. Brief Bioinform. 2020 Dec 1;21(6):2112-2125 [PMID: 31735972]
  52. Chem Sci. 2022 Jan 5;13(3):816-833 [PMID: 35173947]
  53. J Chem Inf Model. 2019 Feb 25;59(2):895-913 [PMID: 30481020]
  54. PeerJ. 2019 Jul 25;7:e7362 [PMID: 31380152]
  55. J Chem Inf Model. 2005 Jan-Feb;45(1):177-82 [PMID: 15667143]
  56. Nat Biotechnol. 2011 Oct 30;29(11):1046-51 [PMID: 22037378]
  57. Expert Opin Drug Discov. 2019 Aug;14(8):755-768 [PMID: 31146609]
  58. Nat Chem Biol. 2011 Apr;7(4):200-2 [PMID: 21336281]
  59. Bioinformatics. 2019 Sep 15;35(18):3329-3338 [PMID: 30768156]
  60. Front Genet. 2021 Jun 21;12:680117 [PMID: 34234813]
  61. IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):8861-8873 [PMID: 34652996]
  62. PLoS Comput Biol. 2023 Mar 31;19(3):e1011036 [PMID: 37000857]
  63. J Chem Inf Model. 2021 Jan 25;61(1):46-66 [PMID: 33347301]
  64. Bioinformatics. 2021 May 5;37(5):693-704 [PMID: 33067636]
  65. Sci Rep. 2021 Feb 24;11(1):4416 [PMID: 33627791]
  66. IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2208-2218 [PMID: 33956632]
  67. Comput Biol Chem. 2024 Feb;108:107982 [PMID: 38039800]
  68. Nat Methods. 2011 Dec 25;9(2):173-5 [PMID: 22198341]
  69. Comput Biol Med. 2023 Sep;163:107136 [PMID: 37329615]
  70. Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i448-i457 [PMID: 37387164]
  71. J Chem Inf Model. 2014 Jun 23;54(6):1717-36 [PMID: 24708446]
  72. ACS Omega. 2023 Jun 15;8(25):22496-22507 [PMID: 37396234]
  73. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  74. Bioinformatics. 2010 May 1;26(9):1169-75 [PMID: 20236947]
  75. Proc Natl Acad Sci U S A. 2021 Apr 13;118(15): [PMID: 33876751]
  76. Nucleic Acids Res. 2007 Jan;35(Database issue):D198-201 [PMID: 17145705]
  77. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  78. Brief Bioinform. 2022 Nov 19;23(6): [PMID: 36411674]
  79. J Chem Inf Model. 2014 Mar 24;54(3):735-43 [PMID: 24521231]
  80. Bioinformatics. 2023 Feb 3;39(2): [PMID: 36688724]
  81. Int J Mol Sci. 2021 Aug 20;22(16): [PMID: 34445696]
  82. Comput Biol Chem. 2021 Jun;92:107476 [PMID: 33799080]
  83. Molecules. 2015 Jun 12;20(6):10947-62 [PMID: 26076113]
  84. Comb Chem High Throughput Screen. 2022;25(4):634-641 [PMID: 33588722]
  85. Nat Protoc. 2024 Oct 14;: [PMID: 39402428]
  86. Nucleic Acids Res. 2008 Jan;36(Database issue):D684-8 [PMID: 18084021]
  87. Int J Mol Sci. 2021 Apr 14;22(8): [PMID: 33919681]
  88. Brief Bioinform. 2023 May 19;24(3): [PMID: 37099690]
  89. Nat Biotechnol. 2022 Oct;40(10):1520-1527 [PMID: 35606422]
  90. Comput Biol Med. 2022 Nov;150:106145 [PMID: 37859276]
  91. Molecules. 2022 Aug 11;27(16): [PMID: 36014351]
  92. Biology (Basel). 2022 Jun 27;11(7): [PMID: 36101348]

Word Cloud

Created with Highcharts 10.0.0DTAlearningmethodsdeeppredictionpredictingdrug-targetaffinitycomprehensivereviewbasedNeuralNetworksvariousapplicationsdrugdevelopmentresearchersrecentadvancesconductedanalysisuseddatasetsmodelsadvantagesAccuratecalculationcrucialpharmaceuticalindustryincludingscreeningdesignrepurposingHowevertraditionalmachinecalculatingoftenlackaccuracyposingsignificantchallengeaccuratelyFortunatelyemergedpromisingapproachcomputationalbiologyleadinglearning-basedsupportdevelopingnovelhighlyprecisionprovidedusingfirstlystatisticalcommonlypublicprovidingessentialinformationintroducingfieldsexploredcommonrepresentationssequencesstructuresdrugstargetsanalysesservedfoundationconstructingNextfocusedexplainingConvolutionalCNNsRecurrentRNNsTransformerGraphGNNseffectivelyemployedspecifichighlighteduniquecontextFinallyperformancemultiplestate-of-the-artaimedhelpunderstandshortcomingsexistingdevelophigh-precisiontoolpromotediscoverydatasetrepresentation

Similar Articles

Cited By