A comprehensive review on the biomedical frontiers of nanowire applications.

Juhi Jannat Mim, Mehedi Hasan, Md Shakil Chowdhury, Jubaraz Ghosh, Md Hosne Mobarak, Fahmida Khanom, Nayem Hossain
Author Information
  1. Juhi Jannat Mim: Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh.
  2. Mehedi Hasan: Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh.
  3. Md Shakil Chowdhury: Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh.
  4. Jubaraz Ghosh: Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh.
  5. Md Hosne Mobarak: Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh.
  6. Fahmida Khanom: Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh.
  7. Nayem Hossain: Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh.

Abstract

This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.

Keywords

References

  1. Nano Lett. 2006 Feb;6(2):318-23 [PMID: 16464057]
  2. Sensors (Basel). 2019 Jul 01;19(13): [PMID: 31266148]
  3. Environ Sci Technol. 2016 Apr 19;50(8):4459-67 [PMID: 26998856]
  4. Front Bioeng Biotechnol. 2020 Aug 13;8:990 [PMID: 32903562]
  5. J Mech Behav Biomed Mater. 2015 Feb;42:19-25 [PMID: 25460922]
  6. Int J Nanomedicine. 2014 May 16;9:2399-407 [PMID: 24876773]
  7. Analyst. 2005 Apr;130(4):421-6 [PMID: 15846872]
  8. Chem Rev. 2015 Nov 11;115(21):11999-2044 [PMID: 26402587]
  9. Front Chem. 2021 Jul 13;9:629054 [PMID: 34327190]
  10. Front Chem. 2022 May 24;10:920430 [PMID: 35685347]
  11. ACS Sens. 2023 Apr 28;8(4):1391-1403 [PMID: 36940263]
  12. J Control Release. 2020 May 10;321:236-258 [PMID: 32061789]
  13. J Phys Chem B. 2006 Nov 23;110(46):23478-81 [PMID: 17107201]
  14. Appl Environ Microbiol. 2008 Apr;74(7):2171-8 [PMID: 18245232]
  15. ACS Appl Mater Interfaces. 2010 Dec;2(12):3422-8 [PMID: 21090766]
  16. J Mater Chem B. 2020 Aug 19;8(32):7213-7224 [PMID: 32638823]
  17. Biosens Bioelectron. 2016 Mar 15;77:695-701 [PMID: 26496224]
  18. Nat Nanotechnol. 2019 Aug;14(8):783-790 [PMID: 31263191]
  19. Biomaterials. 2022 Jan;280:121263 [PMID: 34810036]
  20. Nanotechnology. 2011 Sep 30;22(39):395301 [PMID: 21891843]
  21. Carbohydr Polym. 2021 Mar 1;255:117487 [PMID: 33436247]
  22. Nanoscale. 2021 Mar 4;13(8):4330-4358 [PMID: 33620368]
  23. Biomaterials. 2014 Feb;35(6):1954-66 [PMID: 24331707]
  24. Nanotechnology. 2020 Oct 23;31(43):433001 [PMID: 32610303]
  25. Front Bioeng Biotechnol. 2020 Nov 11;8:603072 [PMID: 33262980]
  26. Cell Tissue Res. 2021 May;384(2):231-240 [PMID: 33544212]
  27. Adv Mater. 2018 May;30(22):e1703444 [PMID: 29460400]
  28. Front Bioeng Biotechnol. 2023 Mar 03;11:1158007 [PMID: 36937744]
  29. Langmuir. 2008 Sep 2;24(17):9668-74 [PMID: 18671418]
  30. Nano Lett. 2011 Sep 14;11(9):3974-8 [PMID: 21848308]
  31. Mater Today Bio. 2022 Aug 08;16:100382 [PMID: 36033373]
  32. Nano Lett. 2005 Jun;5(6):1071-6 [PMID: 15943445]
  33. ACS Sens. 2017 Aug 25;2(8):1086-1102 [PMID: 28730813]
  34. Nanotechnology. 2013 Feb 15;24(6):065503 [PMID: 23340158]
  35. Adv Drug Deliv Rev. 2014 Sep 30;76:60-78 [PMID: 25064554]
  36. PLoS One. 2014 Jul 24;9(7):e103201 [PMID: 25057942]
  37. Nano Lett. 2016 Dec 14;16(12):7439-7445 [PMID: 27960473]
  38. Nanoscale. 2014 Nov 7;6(21):13036-42 [PMID: 25248104]
  39. J Colloid Interface Sci. 2018 Feb 15;512:158-164 [PMID: 29055797]
  40. SLAS Technol. 2023 Jun;28(3):152-164 [PMID: 37019216]
  41. J Control Release. 2014 Sep 28;190:3-8 [PMID: 24794901]
  42. Angew Chem Int Ed Engl. 2012 May 21;51(21):5101-5 [PMID: 22505338]
  43. Acta Biomater. 2011 Jul;7(7):2892-901 [PMID: 21530693]
  44. Chem Biodivers. 2007 Feb;4(2):163-74 [PMID: 17311229]
  45. BMB Rep. 2021 Jul;54(7):356-367 [PMID: 34154700]
  46. Nanomaterials (Basel). 2021 Apr 13;11(4): [PMID: 33924658]
  47. Med Nov Technol Devices. 2023 Mar;17:None [PMID: 36909661]
  48. Nanoscale. 2015 May 14;7(18):8233-60 [PMID: 25877250]
  49. Anal Methods. 2023 Feb 9;15(6):729-737 [PMID: 36722987]
  50. Ostomy Wound Manage. 2004 Sep;50(9A Suppl):1S-10S [PMID: 15499162]
  51. J Control Release. 2015 Dec 10;219:431-444 [PMID: 26244713]
  52. Adv Funct Mater. 2017 Mar 24;27(12): [PMID: 30319321]
  53. Crit Rev Anal Chem. 2022;52(8):1913-1929 [PMID: 34254863]
  54. Chem Rev. 2019 Aug 14;119(15):9136-9152 [PMID: 30995019]
  55. Small. 2009 Dec;5(23):2659-64 [PMID: 19771569]
  56. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1047-52 [PMID: 20080536]
  57. Nano Lett. 2011 Sep 14;11(9):3744-50 [PMID: 21823599]
  58. Adv Healthc Mater. 2023 Oct;12(25):e2300768 [PMID: 37392379]
  59. Nanomaterials (Basel). 2021 Sep 02;11(9): [PMID: 34578601]
  60. Chemistry. 2014 Jan 27;20(5):1242-6 [PMID: 24382702]
  61. Nanotechnology. 2012 Oct 12;23(40):405701 [PMID: 22990131]
  62. Bioconjug Chem. 2022 Jan 19;33(1):67-86 [PMID: 34995076]
  63. ACS Appl Nano Mater. 2020 Sep 25;3(9):8522-8536 [PMID: 36733606]
  64. Adv Sci (Weinh). 2017 Jan 03;4(4):1600332 [PMID: 28435775]
  65. Bioact Mater. 2022 Mar 05;15:372-381 [PMID: 35386339]
  66. Chem Rev. 2019 Oct 23;119(20):11042-11109 [PMID: 31566351]
  67. Expert Rev Mol Diagn. 2021 Jul;21(7):703-721 [PMID: 33877005]
  68. Microsyst Nanoeng. 2020 Jan 13;6:7 [PMID: 34567622]
  69. Front Bioeng Biotechnol. 2018 Nov 14;6:170 [PMID: 30488033]
  70. Langmuir. 2006 Jan 3;22(1):300-5 [PMID: 16378435]
  71. Ann N Y Acad Sci. 2007 Dec;1122:197-218 [PMID: 18077574]
  72. Nano Lett. 2009 Oct;9(10):3570-4 [PMID: 19637854]
  73. Enzyme Microb Technol. 2013 Mar 5;52(3):151-6 [PMID: 23410925]
  74. Nano Lett. 2005 Mar;5(3):457-60 [PMID: 15755094]
  75. Front Bioeng Biotechnol. 2020 Jan 31;7:489 [PMID: 32083068]
  76. ACS Nano. 2014 Sep 23;8(9):9531-41 [PMID: 25133989]
  77. Acc Chem Res. 2021 Jun 1;54(11):2565-2578 [PMID: 33989501]
  78. Polymers (Basel). 2022 Dec 02;14(23): [PMID: 36501672]
  79. Nature. 2013 Sep 19;501(7467):338-45 [PMID: 24048066]
  80. Nat Rev Cancer. 2003 Apr;3(4):267-75 [PMID: 12671665]
  81. Bioprocess Biosyst Eng. 2020 Aug;43(8):1339-1357 [PMID: 32193755]
  82. J Phys Chem Lett. 2021 Nov 4;12(43):10695-10705 [PMID: 34709833]
  83. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2130-5 [PMID: 19179282]
  84. ACS Nano. 2012 Sep 25;6(9):7832-41 [PMID: 22900471]
  85. Adv Mater. 2020 Jul;32(27):e1903945 [PMID: 31746050]
  86. Analyst. 2008 Jan;133(1):126-32 [PMID: 18087623]
  87. Nat Commun. 2022 Feb 11;13(1):829 [PMID: 35149672]
  88. Regen Biomater. 2023 Mar 27;10:rbad032 [PMID: 37081861]
  89. J Control Release. 2023 Mar;355:709-729 [PMID: 36805872]
  90. Nature. 2007 Feb 1;445(7127):519-22 [PMID: 17268465]
  91. Methods Mol Biol. 2020;2059:1-54 [PMID: 31435914]
  92. Nanoscale Res Lett. 2014 Feb 03;9(1):56 [PMID: 24484729]
  93. Adv Sci (Weinh). 2021 Aug;8(16):e2004393 [PMID: 34166584]
  94. Nanotechnol Sci Appl. 2021 Nov 16;14:197-220 [PMID: 34815666]
  95. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Jul-Aug;7(4):548-64 [PMID: 25641955]
  96. Biomed Mater. 2018 Aug 06;13(5):054001 [PMID: 29794324]
  97. iScience. 2022 Aug 15;25(9):104947 [PMID: 36065192]
  98. Int J Mol Sci. 2023 Sep 22;24(19): [PMID: 37833866]
  99. Eur J Clin Microbiol Infect Dis. 2020 Jun;39(6):1011-1019 [PMID: 32291542]
  100. Annu Rev Biochem. 2022 Jun 21;91:61-87 [PMID: 35363509]
  101. Nano Lett. 2012 Apr 11;12(4):1868-72 [PMID: 22432636]
  102. ACS Nano. 2020 Apr 28;14(4):5135-5142 [PMID: 32293168]
  103. Nanomedicine (Lond). 2006 Jun;1(1):51-65 [PMID: 17716209]
  104. Chem Rev. 2014 Jun 25;114(12):6462-555 [PMID: 24897552]
  105. Sci Rep. 2022 Oct 6;12(1):16698 [PMID: 36202902]
  106. ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34212-34221 [PMID: 31465192]
  107. Front Bioeng Biotechnol. 2022 Sep 08;10:952523 [PMID: 36159672]
  108. Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19337-19343 [PMID: 34121300]
  109. Front Chem. 2014 Nov 17;2:104 [PMID: 25453031]
  110. J Toxicol. 2021 Jul 30;2021:9954443 [PMID: 34422042]
  111. Nano Lett. 2013;13(12):6281-6 [PMID: 24274858]
  112. Adv Mater Technol. 2023 May 25;8(10): [PMID: 38644939]
  113. Langmuir. 2007 Mar 13;23(6):3409-17 [PMID: 17295530]
  114. JAMA Intern Med. 2014 May;174(5):710-8 [PMID: 24663331]
  115. Curr Opin Chem Biol. 2008 Oct;12(5):522-8 [PMID: 18804551]
  116. Front Chem. 2022 Aug 15;10:987447 [PMID: 36046727]
  117. Cancers (Basel). 2019 Dec 06;11(12): [PMID: 31817598]
  118. ACS Appl Mater Interfaces. 2021 May 12;13(18):21040-21050 [PMID: 33913690]
  119. Chem Rev. 2010 Jan;110(1):361-88 [PMID: 20070117]
  120. Crit Rev Biotechnol. 2022 Dec;42(8):1180-1212 [PMID: 34823433]
  121. J Mater Sci Mater Med. 2020 Jul 8;31(7):60 [PMID: 32642974]
  122. Sci Rep. 2017 Aug 30;7(1):9978 [PMID: 28855705]
  123. Biomater Adv. 2022 Oct;141:213103 [PMID: 36084352]
  124. Iran J Basic Med Sci. 2020 Dec;23(12):1618-1627 [PMID: 33489037]
  125. Chem Rec. 2022 Aug;22(8):e202200016 [PMID: 35616156]
  126. Chem Eng Sci. 2015 Mar 24;125:75-84 [PMID: 25684779]
  127. ACS Omega. 2019 Oct 25;4(19):17967-17971 [PMID: 31720500]
  128. Front Genet. 2023 May 12;14:1163392 [PMID: 37252668]
  129. Nanoscale. 2023 Feb 23;15(8):3693-3703 [PMID: 36727608]
  130. Nanoscale. 2019 Aug 15;11(32):15195-15205 [PMID: 31380883]
  131. J Mater Chem B. 2020 Sep 14;8(34):7609-7632 [PMID: 32744274]
  132. Biosens Bioelectron. 2017 May 15;91:482-488 [PMID: 28073028]
  133. Beilstein J Nanotechnol. 2017 Aug 3;8:1571-1600 [PMID: 28884063]
  134. Nanotechnology. 2018 Feb 16;29(7):075301 [PMID: 29251267]
  135. Polymers (Basel). 2022 Feb 03;14(3): [PMID: 35160590]
  136. Mater Today Bio. 2022 Apr 14;14:100252 [PMID: 35509864]
  137. Int J Nanomedicine. 2011;6:2963-79 [PMID: 22162655]
  138. Int J Med Inform. 2011 Aug;80(8):604-5 [PMID: 21530382]
  139. Adv Funct Mater. 2022 Feb 16;32(8): [PMID: 35603230]
  140. Nanomaterials (Basel). 2021 Jun 24;11(7): [PMID: 34202505]
  141. J Wound Care. 2014 Sep;23(9):431-2, 434, 436 passim [PMID: 25284295]
  142. Nano Today. 2021 Jun;38: [PMID: 36970717]
  143. Nanoscale. 2017 Jul 13;9(27):9676-9684 [PMID: 28675222]
  144. Front Bioeng Biotechnol. 2020 May 27;8:455 [PMID: 32528940]
  145. Micromachines (Basel). 2018 Dec 19;9(12): [PMID: 30572645]
  146. Clin Ther. 2016 Jul;38(7):1551-66 [PMID: 27158009]
  147. Semin Oncol. 2019 Jun;46(3):226-232 [PMID: 31451309]
  148. Tissue Cell. 2023 Feb;80:101995 [PMID: 36512950]
  149. Biosens Bioelectron. 2011 Mar 15;26(7):3233-9 [PMID: 21256728]
  150. J Nanobiotechnology. 2020 Mar 12;18(1):42 [PMID: 32164746]
  151. ACS Appl Mater Interfaces. 2021 Feb 24;13(7):7854-7864 [PMID: 33560115]
  152. J Intern Med. 2017 Jul;282(1):24-36 [PMID: 28181720]
  153. Acc Chem Res. 2013 Jul 16;46(7):1450-61 [PMID: 23441891]
  154. J Phys Chem Lett. 2016 Feb 18;7(4):685-92 [PMID: 26817682]
  155. Heliyon. 2023 Sep 07;9(9):e19929 [PMID: 37809900]
  156. Micromachines (Basel). 2021 May 31;12(6): [PMID: 34072848]
  157. Drug Discov Today. 2017 Dec;22(12):1825-1834 [PMID: 28847758]
  158. Adv Healthc Mater. 2021 Jan;10(1):e2001289 [PMID: 33052037]
  159. Polymers (Basel). 2022 Jun 06;14(11): [PMID: 35683972]
  160. Nat Nanotechnol. 2011 Sep 25;6(11):720-5 [PMID: 21946708]
  161. IEEE Trans Nanobioscience. 2014 Mar;13(1):19-30 [PMID: 24594511]
  162. Chem Rev. 2016 Oct 12;116(19):12536-12563 [PMID: 27680291]
  163. Nat Mater. 2002 Dec;1(4):253-7 [PMID: 12618788]
  164. Colloids Surf B Biointerfaces. 2019 Aug 1;180:401-410 [PMID: 31082778]
  165. Int J Biol Macromol. 2023 Jan 31;226:1079-1087 [PMID: 36436595]
  166. Tissue Eng Part C Methods. 2019 May;25(5):276-287 [PMID: 30909819]
  167. Front Bioeng Biotechnol. 2020 Mar 24;8:83 [PMID: 32266221]
  168. Nat Commun. 2012;3:1283 [PMID: 23250413]
  169. Langmuir. 2006 Apr 11;22(8):3830-5 [PMID: 16584263]
  170. Biosens Bioelectron. 2015 May 15;67:656-61 [PMID: 25453738]
  171. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Jan;15(1):e1835 [PMID: 35898167]
  172. Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:1075-1091 [PMID: 30889640]
  173. Front Pharmacol. 2019 Mar 11;9:1401 [PMID: 30914959]
  174. Mater Today Bio. 2023 Nov 29;23:100888 [PMID: 38075250]
  175. J Am Chem Soc. 2011 Mar 23;133(11):4005-9 [PMID: 21348448]
  176. Sensors (Basel). 2008 Jan 21;8(1):290-313 [PMID: 27879709]
  177. Sci Rep. 2017 Sep 14;7(1):11576 [PMID: 28912534]
  178. Anal Chem. 2015 Nov 17;87(22):11203-8 [PMID: 26473941]
  179. Regen Biomater. 2014 Nov;1(1):57-65 [PMID: 26816625]
  180. Science. 1998 Jan 9;279(5348):208-11 [PMID: 9422689]
  181. Adv Mater. 2023 Sep;35(38):e2304176 [PMID: 37270664]
  182. Chem Soc Rev. 2002 Jul;31(4):230-8 [PMID: 12164069]
  183. Dalton Trans. 2021 Mar 16;50(10):3516-3522 [PMID: 33433537]
  184. Chem Rev. 2019 Aug 14;119(15):9221-9259 [PMID: 31333018]
  185. Nat Mater. 2019 Dec;18(12):1321-1326 [PMID: 31591530]
  186. Drug Discov Today. 2018 May;23(5):1043-1052 [PMID: 29155366]
  187. J Biomater Appl. 2018 Sep;33(3):352-362 [PMID: 30223735]
  188. Springerplus. 2013 Apr 10;2(1):151 [PMID: 23667808]
  189. Nanomaterials (Basel). 2022 Mar 22;12(7): [PMID: 35407161]
  190. Nanoscale Res Lett. 2014 Aug 13;9(1):393 [PMID: 25170330]
  191. Nano Converg. 2019 May 1;6(1):13 [PMID: 31041617]
  192. Adv Mater. 2023 Dec;35(52):e2303197 [PMID: 37358398]
  193. Front Bioeng Biotechnol. 2022 Nov 14;10:1024871 [PMID: 36619389]
  194. J Mech Behav Biomed Mater. 2016 Apr;57:95-108 [PMID: 26707027]
  195. Adv Drug Deliv Rev. 2022 Sep;188:114446 [PMID: 35820600]
  196. Langmuir. 2013 Dec 31;29(52):16113-8 [PMID: 24345038]
  197. Biosens Bioelectron. 2015 Apr 15;66:198-207 [PMID: 25460902]
  198. Med Eng Phys. 2020 Feb;76:69-78 [PMID: 31883633]
  199. Front Cardiovasc Med. 2020 Oct 23;7:554597 [PMID: 33195451]
  200. ACS Appl Mater Interfaces. 2023 Nov 1;15(43):49964-49973 [PMID: 37769296]
  201. Ther Deliv. 2020 Oct;11(10):653-672 [PMID: 32475258]
  202. Sci Rep. 2020 Dec 16;10(1):22027 [PMID: 33328513]
  203. Adv Mater. 2020 Mar;32(9):e1903862 [PMID: 31944430]
  204. Theranostics. 2020 Jan 1;10(3):1296-1318 [PMID: 31938066]
  205. Adv Mater. 2018 Nov;30(48):e1803430 [PMID: 30357968]
  206. Colloids Surf B Biointerfaces. 2020 Oct;194:111217 [PMID: 32622255]
  207. Nat Rev Cancer. 2003 Apr;3(4):243-52 [PMID: 12671663]
  208. Sensors (Basel). 2020 Nov 27;20(23): [PMID: 33260973]
  209. Heliyon. 2024 Feb 16;10(4):e26537 [PMID: 38420474]
  210. Chem Rev. 2019 Aug 14;119(15):9074-9135 [PMID: 31361471]
  211. Front Chem. 2020 Apr 21;8:297 [PMID: 32373590]
  212. Nano Lett. 2016 Jul 13;16(7):4472-6 [PMID: 27341189]
  213. Biomaterials. 2016 Jan;75:71-81 [PMID: 26491996]
  214. Adv Drug Deliv Rev. 2018 Apr;129:148-168 [PMID: 29262296]
  215. Biosens Bioelectron. 2011 Oct 15;28(1):239-42 [PMID: 21820303]
  216. Light Sci Appl. 2021 Jun 9;10(1):124 [PMID: 34108445]
  217. Mass Spectrom Rev. 2021 Jan;40(1):53-71 [PMID: 31755145]
  218. IEEE Trans Nanobioscience. 2016 Apr;15(3):186-99 [PMID: 26978831]
  219. Pharmaceutics. 2023 Mar 02;15(3): [PMID: 36986682]
  220. Adv Sci (Weinh). 2018 Apr 19;5(6):1700817 [PMID: 29984132]
  221. Int J Antimicrob Agents. 2020 May;55(5):105951 [PMID: 32234466]
  222. Nat Commun. 2021 Oct 29;12(1):6261 [PMID: 34716289]
  223. ACS Biomater Sci Eng. 2018 Jul 9;4(7):2237-2275 [PMID: 33435097]
  224. Nano Lett. 2010 Feb 10;10(2):547-52 [PMID: 19908823]
  225. Materials (Basel). 2020 Mar 19;13(6): [PMID: 32204482]
  226. Nanomaterials (Basel). 2021 Jan 03;11(1): [PMID: 33401631]
  227. Anal Chem. 2013 Aug 20;85(16):7912-8 [PMID: 23898965]
  228. Sci Am. 2009 May;300(5):64-71 [PMID: 19438051]
  229. Colloids Surf B Biointerfaces. 2018 Oct 1;170:20-35 [PMID: 29860217]
  230. Mater Sci Eng C Mater Biol Appl. 2017 Apr 1;73:465-471 [PMID: 28183633]
  231. Nanomedicine (Lond). 2006 Jun;1(1):9-12 [PMID: 17716203]
  232. Nat Nanotechnol. 2011 Nov 04;6(11):692-3 [PMID: 22051743]
  233. Nanophotonics. 2023 Jan 23;12(3):339-358 [PMID: 39635403]
  234. Int J Nanomedicine. 2012;7:2767-81 [PMID: 22745541]
  235. J Biomed Mater Res B Appl Biomater. 2021 Apr;109(4):477-485 [PMID: 32865333]
  236. Nanotechnology. 2020 Mar 20;31(23):235709 [PMID: 32084656]
  237. Front Med (Lausanne). 2020 Nov 30;7:585485 [PMID: 33330543]
  238. Small. 2016 Dec;12(46):6398-6406 [PMID: 27671842]
  239. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5258-65 [PMID: 7777494]
  240. Nano Lett. 2019 Apr 10;19(4):2198-2206 [PMID: 30884238]
  241. Nanoscale. 2017 Oct 5;9(38):14307-14311 [PMID: 28930338]
  242. Langmuir. 2023 Nov 28;39(47):16812-16824 [PMID: 37965918]
  243. Biotechnol Genet Eng Rev. 2024 Dec;40(4):3611-3652 [PMID: 36424727]
  244. Annu Rev Biomed Eng. 2010 Aug 15;12:119-42 [PMID: 20415592]
  245. Biomater Sci. 2020 Aug 7;8(15):4109-4128 [PMID: 32638706]
  246. Acta Biomater. 2015 Apr;16:145-55 [PMID: 25653217]
  247. ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39135-39141 [PMID: 34374274]
  248. Biomaterials. 2011 May;32(13):3499-506 [PMID: 21296409]
  249. Nat Nanotechnol. 2018 Nov;13(11):1048-1056 [PMID: 30104619]
  250. Int J Nanomedicine. 2017 Jun 27;12:4623-4631 [PMID: 28721039]
  251. Chem Commun (Camb). 2023 Jun 15;59(49):7534-7558 [PMID: 37194961]
  252. Angew Chem Int Ed Engl. 2013 Jan 28;52(5):1457-61 [PMID: 23233367]
  253. Nanoscale Adv. 2020 Oct 2;2(11):5015-5045 [PMID: 36132034]
  254. Nanomedicine. 2010 Feb;6(1):78-83 [PMID: 19446654]
  255. Acta Biomater. 2010 Mar;6(3):1167-77 [PMID: 19733699]
  256. Macromol Biosci. 2023 Apr;23(4):e2200450 [PMID: 36662774]
  257. Cancers (Basel). 2014 Sep 05;6(3):1769-92 [PMID: 25198391]
  258. Front Chem. 2020 May 19;8:341 [PMID: 32509720]
  259. Nanotechnology. 2019 Nov 1;30(44):442001 [PMID: 31342924]
  260. Biosensors (Basel). 2022 Feb 12;12(2): [PMID: 35200375]
  261. Nano Lett. 2007 Feb;7(2):536-40 [PMID: 17298022]
  262. Int J Antimicrob Agents. 2020 May;55(5):105955 [PMID: 32234468]
  263. Biomaterials. 2008 Mar;29(8):955-62 [PMID: 18082253]
  264. ACS Nano. 2012 Aug 28;6(8):7092-102 [PMID: 22769051]
  265. ACS Nano. 2016 Sep 27;10(9):8474-81 [PMID: 27419468]
  266. Cancers (Basel). 2023 Jun 29;15(13): [PMID: 37444523]
  267. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3208-12 [PMID: 15716362]
  268. ACS Nano. 2019 May 28;13(5):6060-6070 [PMID: 31067402]
  269. Lancet. 2012 Apr 21;379(9825):1525-33 [PMID: 22516558]
  270. Anal Chim Acta. 2012 Oct 24;749:1-15 [PMID: 23036462]
  271. Nano Lett. 2012 Sep 12;12(9):4748-56 [PMID: 22852557]
  272. Nanoscale. 2018 May 24;10(20):9729-9735 [PMID: 29762623]
  273. Nano Lett. 2007 Feb;7(2):243-6 [PMID: 17297985]
  274. Mol Neurobiol. 2021 Jun;58(6):2862-2873 [PMID: 33523358]
  275. Materials (Basel). 2021 Apr 27;14(9): [PMID: 33925382]
  276. Bioact Mater. 2020 Nov 30;6(6):1711-1726 [PMID: 33313450]
  277. Adv Mater. 2020 Apr;32(15):e1902343 [PMID: 31464046]
  278. Small. 2010 Aug 16;6(16):1705-22 [PMID: 20712030]
  279. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Nov-Dec;5(6):629-45 [PMID: 23897672]
  280. Biosens Bioelectron. 2014 Oct 15;60:101-11 [PMID: 24787124]
  281. Adv Mater. 2023 Sep;35(39):e2302472 [PMID: 37385261]
  282. Materials (Basel). 2017 Nov 13;10(11): [PMID: 29137195]
  283. Front Chem. 2022 Mar 10;10:864186 [PMID: 35360530]
  284. Mater Today Bio. 2022 Jun 22;15:100333 [PMID: 35774196]
  285. Biotechnol Prog. 2009 Nov-Dec;25(6):1539-60 [PMID: 19824042]
  286. Adv Healthc Mater. 2021 Mar;10(6):e2001596 [PMID: 33331143]
  287. Nat Nanotechnol. 2011 Jan;6(1):13-22 [PMID: 21151110]
  288. Adv Healthc Mater. 2013 May;2(5):632-66 [PMID: 23584841]
  289. ACS Appl Mater Interfaces. 2019 Apr 24;11(16):14980-14985 [PMID: 30916543]
  290. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Mar-Apr;4(2):184-203 [PMID: 22162425]
  291. Cancers (Basel). 2021 Oct 21;13(21): [PMID: 34771448]
  292. Biomaterials. 2020 Nov;260:120163 [PMID: 32882512]
  293. Nanotechnology. 2023 Feb 20;34(18): [PMID: 36640446]
  294. Adv Drug Deliv Rev. 2021 Dec;179:113997 [PMID: 34634396]
  295. J Mater Chem B. 2014 Sep 28;2(36):6106-6118 [PMID: 32261863]
  296. Biomaterials. 2012 Jul;33(20):5013-22 [PMID: 22513273]
  297. Front Neuroeng. 2010 Oct 15;3:112 [PMID: 21060801]
  298. Nanotheranostics. 2023 Mar 5;7(3):236-257 [PMID: 37064613]
  299. Nanoscale Res Lett. 2014 Sep 19;9(1):511 [PMID: 25276106]
  300. ACS Nano. 2020 Oct 27;14(10):12390-12469 [PMID: 33052050]
  301. Nano Today. 2021 Apr;37:101092 [PMID: 33584847]
  302. Enzyme Microb Technol. 2022 May;156:110006 [PMID: 35144119]
  303. CNS Neurol Disord Drug Targets. 2012 Feb;11(1):86-95 [PMID: 22385571]
  304. Nanoscale. 2021 Apr 21;13(15):7034-7051 [PMID: 33889882]
  305. Nanotechnology. 2011 Mar 25;22(12):125707 [PMID: 21317485]
  306. Biosens Bioelectron. 2010 Jul 15;25(11):2447-53 [PMID: 20435462]
  307. Nanotechnology. 2017 Jan 6;28(1):012001 [PMID: 27893437]
  308. Rep Prog Phys. 2017 Jan;80(1):016701 [PMID: 27823988]

Word Cloud

Created with Highcharts 10.0.0Nanowirespotentialcomprehensivereviewnanowirestechniquespossessdrugdeliveryapplicationsenablesprecisionbiomedicalobstaclescapabilitiesexaminesimmensecapacitynanostructurescharacterizedunboundeddimensionsprofoundlytransformfieldbiomedicinecreatedcombiningseveralmaterialsusingelectrospinningvapordepositiondistinctmechanicalopticalelectricalpropertiesresultwell-suitedusenanoscaleelectronicdevicessystemschemicalsensorsutilizationvapor-liquid-solidVLSapproachtemplate-assistedapproachesachievementsynthesisallowscustomizationcharacteristicsturncapabilityintracellularsensingaccurateadministrationexhibitimagingneuralinterfacingtissueengineeringdespiterelatedbiocompatibilityscalablemanufacturingmultifunctionalgreatlyinfluenceintersectionnanotechnologyhealthcareSurmountingpresentunleashcompleteleadingsignificantimprovementsdiagnosticsbiosensingregenerativemedicinenext-generationpoint-of-caremedicinesfrontiersnanowireBiomedicalContentsDrugNWsSynthesis

Similar Articles

Cited By