Disentangling the effects of sulfate and other seawater ions on microbial communities and greenhouse gas emissions in a coastal forested wetland.

Clifton P Bueno de Mesquita, Wyatt H Hartman, Marcelo Ardón, Susannah G Tringe
Author Information
  1. Clifton P Bueno de Mesquita: Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
  2. Wyatt H Hartman: Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
  3. Marcelo Ardón: Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, United States.
  4. Susannah G Tringe: Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.

Abstract

Seawater intrusion into freshwater wetlands causes changes in microbial communities and biogeochemistry, but the exact mechanisms driving these changes remain unclear. Here we use a manipulative laboratory microcosm experiment, combined with DNA sequencing and biogeochemical measurements, to tease apart the effects of sulfate from other seawater ions. We examined changes in microbial taxonomy and function as well as emissions of carbon dioxide, methane, and nitrous oxide in response to changes in ion concentrations. Greenhouse gas emissions and microbial richness and composition were altered by artificial seawater regardless of whether sulfate was present, whereas sulfate alone did not alter emissions or communities. Surprisingly, addition of sulfate alone did not lead to increases in the abundance of sulfate reducing bacteria or sulfur cycling genes. Similarly, genes involved in carbon, nitrogen, and phosphorus cycling responded more strongly to artificial seawater than to sulfate. These results suggest that other ions present in seawater, not sulfate, drive ecological and biogeochemical responses to seawater intrusion and may be drivers of increased methane emissions in soils that received artificial seawater addition. A better understanding of how the different components of salt water alter microbial community composition and function is necessary to forecast the consequences of coastal wetland salinization.

Keywords

References

  1. Nucleic Acids Res. 2021 Jan 8;49(D1):D751-D763 [PMID: 33119741]
  2. Glob Chang Biol. 2019 Feb;25(2):549-561 [PMID: 30537235]
  3. Appl Environ Microbiol. 1982 Dec;44(6):1270-6 [PMID: 16346144]
  4. Nat Protoc. 2023 Jan;18(1):208-238 [PMID: 36376589]
  5. Bioinformatics. 2016 Feb 15;32(4):605-7 [PMID: 26515820]
  6. Nat Commun. 2021 Mar 31;12(1):2009 [PMID: 33790294]
  7. Sci Total Environ. 2019 Dec 1;694:133609 [PMID: 31400683]
  8. Front Microbiol. 2011 May 02;2:81 [PMID: 21734907]
  9. Ecology. 2020 Mar;101(3):e02956 [PMID: 31840237]
  10. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  11. mSystems. 2024 Jan 23;9(1):e0093623 [PMID: 38170982]
  12. FEMS Microbiol Ecol. 2022 Mar 16;98(3): [PMID: 35170736]
  13. Appl Environ Microbiol. 1983 Jan;45(1):187-92 [PMID: 16346164]
  14. Appl Microbiol Biotechnol. 2020 Aug;104(16):6839-6854 [PMID: 32542472]
  15. Aquat Biosyst. 2013 Oct 02;9(1):19 [PMID: 24083554]
  16. Glob Chang Biol. 2013 Oct;19(10):2976-85 [PMID: 23749653]
  17. Ecol Appl. 2012 Jan;22(1):264-80 [PMID: 22471089]
  18. Int J Syst Evol Microbiol. 2001 Sep;51(Pt 5):1911-1916 [PMID: 11594625]
  19. Bioinformatics. 2015 May 15;31(10):1674-6 [PMID: 25609793]
  20. ISME J. 2019 Mar;13(3):836-846 [PMID: 30446737]
  21. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Oecologia. 1983 Nov;60(2):264-266 [PMID: 28310495]
  24. Appl Environ Microbiol. 2006 Mar;72(3):2080-91 [PMID: 16517657]
  25. Front Microbiol. 2015 Aug 04;6:771 [PMID: 26300854]
  26. Environ Microbiol. 2021 Feb;23(2):641-651 [PMID: 32506654]
  27. PLoS One. 2011;6(11):e27597 [PMID: 22125616]
  28. Nat Methods. 2014 Nov;11(11):1144-6 [PMID: 25218180]
  29. ISME J. 2017 Dec;11(12):2864-2868 [PMID: 28742071]
  30. Glob Chang Biol. 2020 May;26(5):2988-3005 [PMID: 32068924]
  31. Front Microbiol. 2017 Nov 15;8:2224 [PMID: 29187837]
  32. ISME J. 2013 Jan;7(1):210-20 [PMID: 22895159]
  33. Appl Environ Microbiol. 2017 Feb 1;83(4): [PMID: 27913414]
  34. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  35. Microorganisms. 2022 Jan 20;10(2): [PMID: 35208670]
  36. Bioinformatics. 2021 Dec 22;38(1):270-272 [PMID: 34260698]
  37. Sci Total Environ. 2022 Feb 1;806(Pt 3):151390 [PMID: 34740654]
  38. Microbiol Mol Biol Rev. 2023 Mar 21;87(1):e0002422 [PMID: 36692297]
  39. Nucleic Acids Res. 2022 Jan 7;50(D1):D785-D794 [PMID: 34520557]
  40. Appl Environ Microbiol. 1982 Jun;43(6):1373-9 [PMID: 16346033]
  41. Appl Environ Microbiol. 2006 Jun;72(6):3832-45 [PMID: 16751487]
  42. Extremophiles. 2015 Jan;19(1):39-47 [PMID: 25370366]
  43. J Mol Biol. 2016 Feb 22;428(4):726-731 [PMID: 26585406]
  44. Front Microbiol. 2011 Apr 19;2:69 [PMID: 21747791]
  45. J Bacteriol. 2001 Mar;183(5):1727-33 [PMID: 11160104]
  46. Sci Rep. 2017 Oct 17;7(1):13332 [PMID: 29042583]
  47. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11436-40 [PMID: 17592124]
  48. Extremophiles. 2011 May;15(3):391-401 [PMID: 21479878]
  49. Nat Biotechnol. 2018 Jul 6;36(7):566-569 [PMID: 29979655]
  50. Bioinformatics. 2019 Nov 15;: [PMID: 31730192]
  51. mBio. 2020 Sep 22;11(5): [PMID: 32963001]
  52. PeerJ. 2015 Aug 27;3:e1165 [PMID: 26336640]

Word Cloud

Created with Highcharts 10.0.0sulfateseawatermicrobialemissionschangesintrusioncommunitiesionsmethaneartificialwetlandsbiogeochemicaleffectsfunctioncarbongascompositionpresentalonealteradditioncyclinggenescoastalwetlandSeawaterfreshwatercausesbiogeochemistryexactmechanismsdrivingremainunclearusemanipulativelaboratorymicrocosmexperimentcombinedDNAsequencingmeasurementsteaseapartexaminedtaxonomywelldioxidenitrousoxideresponseionconcentrationsGreenhouserichnessalteredregardlesswhetherwhereasSurprisinglyleadincreasesabundancereducingbacteriasulfurSimilarlyinvolvednitrogenphosphorusrespondedstronglyresultssuggestdriveecologicalresponsesmaydriversincreasedsoilsreceivedbetterunderstandingdifferentcomponentssaltwatercommunitynecessaryforecastconsequencessalinizationDisentanglinggreenhouseforestedsoilmicrobes

Similar Articles

Cited By