Understanding dynamics and overlapping epidemiologies of HIV, HSV-2, chlamydia, gonorrhea, and syphilis in sexual networks of men who have sex with men.

Ryosuke Omori, Hiam Chemaitelly, Laith J Abu-Raddad
Author Information
  1. Ryosuke Omori: Division of Bioinformatics, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.
  2. Hiam Chemaitelly: Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar.
  3. Laith J Abu-Raddad: Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar.

Abstract

Introduction: We aimed to investigate the overlapping epidemiologies of human immunodeficiency virus (HIV), herpes simplex virus type 2 (HSV-2), chlamydia, gonorrhea, and syphilis in sexual networks of men who have sex with men (MSM), and to explore to what extent the epidemiology of one sexually transmitted infection (STI) relates to or differs from that of another STI.
Methods: An individual-based Monte Carlo simulation model was employed to simulate the concurrent transmission of STIs within diverse sexual networks of MSM. The model simulated sexual partnering, birth, death, and STI transmission within each specific sexual network. The model parameters were chosen based on the current knowledge and understanding of the natural history, transmission, and epidemiology of each considered STI. Associations were measured using the Spearman's rank correlation coefficient (SRCC) and maximal information coefficient (MIC).
Results: A total of 500 sexual networks were simulated by varying the mean and variance of the number of partners for both short-term and all partnerships, degree correlation, and clustering coefficient. HSV-2 had the highest current infection prevalence across the simulations, followed by HIV, chlamydia, syphilis, and gonorrhea. Threshold and saturation effects emerged in the relationship between STIs across the simulated networks, and all STIs demonstrated moderate to strong associations. The strongest current infection prevalence association was between HIV and gonorrhea, with an SRCC of 0.84 (95% CI: 0.80-0.87) and an MIC of 0.81 (95% CI: 0.74-0.88). The weakest association was between HSV-2 and syphilis, with an SRCC of 0.54 (95% CI: 0.48-0.59) and an MIC of 0.57 (95% CI, 0.49-0.65). Gonorrhea exhibited the strongest associations with the other STIs while syphilis had the weakest associations. Across the simulated networks, proportions of the population with zero, one, two, three, four, and five concurrent STI infections were 48.6, 37.7, 11.1, 2.4, 0.3, and < 0.1%, respectively. For lifetime exposure to these infections, these proportions were 13.6, 21.0, 22.9, 24.3, 13.4, and 4.8%, respectively.
Conclusion: STI epidemiologies demonstrate substantial overlap and associations, alongside nuanced differences that shape a unique pattern for each STI. Gonorrhea exhibits an "intermediate STI epidemiology," reflected by the highest average correlation coefficient with other STIs.

Keywords

References

  1. Lancet Infect Dis. 2017 Aug;17(8):e235-e279 [PMID: 28701272]
  2. Vaccine. 2014 Mar 20;32(14):1630-7 [PMID: 24480024]
  3. AIDS. 2008 May 31;22(9):1055-61 [PMID: 18520349]
  4. Int J STD AIDS. 2023 Sep;34(10):694-701 [PMID: 37146303]
  5. PLoS One. 2015 Dec 30;10(12):e0145729 [PMID: 26716442]
  6. Lancet. 2006 Dec 2;368(9551):2001-16 [PMID: 17141708]
  7. Vaccine. 2019 Nov 28;37(50):7408-7418 [PMID: 29224963]
  8. Sex Transm Dis. 2000 Nov;27(10):579-87 [PMID: 11099073]
  9. Vaccine. 2010 May 28;28(24):4091-102 [PMID: 19909831]
  10. Epidemics. 2020 Jan 24;30:100386 [PMID: 32004795]
  11. Sex Transm Dis. 2001 Nov;28(11):613-21 [PMID: 11677381]
  12. J Infect Dis. 2005 May 1;191(9):1403-9 [PMID: 15809897]
  13. Bull World Health Organ. 2019 Aug 01;97(8):548-562P [PMID: 31384073]
  14. J Math Biol. 2013 Mar;66(4-5):979-1019 [PMID: 23161473]
  15. Sci Rep. 2018 Jul 31;8(1):11503 [PMID: 30065272]
  16. Sex Transm Infect. 2018 Aug;94(5):372-376 [PMID: 29203577]
  17. Science. 2006 Dec 8;314(5805):1603-6 [PMID: 17158329]
  18. PLoS Med. 2022 Dec 15;19(12):e1003938 [PMID: 36520853]
  19. Sex Transm Infect. 2019 Aug;95(5):336-341 [PMID: 31010954]
  20. Bull World Health Organ. 1990;68(5):639-54 [PMID: 2289300]
  21. Lancet HIV. 2022 Jul;9(7):e496-e505 [PMID: 35777411]
  22. Sci Rep. 2020 Nov 9;10(1):19293 [PMID: 33168901]
  23. AIDS. 1997;11 Suppl A:S209-16 [PMID: 9451987]
  24. Sex Transm Infect. 2017 Dec;93(8):599-606 [PMID: 28325771]
  25. AIDS. 2018 Jun 19;32(10):1343-1352 [PMID: 29794495]
  26. Bull World Health Organ. 2020 May 01;98(5):315-329 [PMID: 32514197]
  27. Med Clin North Am. 1990 Nov;74(6):1339-52 [PMID: 2246943]
  28. Epidemics. 2010 Dec;2(4):173-82 [PMID: 21352788]
  29. Math Biosci. 1996 Apr 15;133(2):165-95 [PMID: 8718707]
  30. Sex Transm Dis. 2002 Dec;29(12):818-27 [PMID: 12466726]
  31. Philos Trans R Soc Lond B Biol Sci. 1993 Oct 29;342(1300):137-59 [PMID: 7904355]
  32. Vaccines (Basel). 2020 Jul 08;8(3): [PMID: 32650385]
  33. Asian J Androl. 2008 Jan;10(1):110-4 [PMID: 18087650]
  34. Sex Transm Infect. 2015 Sep;91(6):451-7 [PMID: 25746040]
  35. Epidemics. 2019 Jun;27:66-76 [PMID: 30738786]
  36. Lancet Infect Dis. 2017 Dec;17(12):1303-1316 [PMID: 28843576]
  37. AIDS. 2017 Jul 31;31(12):1721-1732 [PMID: 28514276]
  38. Sex Transm Dis. 2016 Mar;43(3):139-46 [PMID: 26859800]
  39. PLoS One. 2008 May 21;3(5):e2230 [PMID: 18493617]
  40. Sex Transm Infect. 2024 Feb 19;100(2):84-90 [PMID: 38124224]

MeSH Term

Male
Humans
Gonorrhea
Syphilis
Herpesvirus 2, Human
Homosexuality, Male
HIV
HIV Infections
Sexual and Gender Minorities
Sexually Transmitted Diseases
Chlamydia

Word Cloud

Created with Highcharts 10.0.00STIsexualnetworksmenHIVsyphilisSTIsHSV-2gonorrheaepidemiologysimulatedcoefficientassociations95%epidemiologieschlamydiasexinfectionmodeltransmissioncurrentcorrelationSRCCMICCI:4overlappingvirus2MSMonesexuallytransmittedconcurrentwithinhighestprevalenceacrossstrongestassociationweakestGonorrheaproportionsinfections63respectively13Introduction:aimedinvestigatehumanimmunodeficiencyherpessimplextypeexploreextentrelatesdiffersanotherMethods:individual-basedMonteCarlosimulationemployedsimulatediversepartneringbirthdeathspecificnetworkparameterschosenbasedknowledgeunderstandingnaturalhistoryconsideredAssociationsmeasuredusingSpearman'srankmaximalinformationResults:total500varyingmeanvariancenumberpartnersshort-termpartnershipsdegreeclusteringsimulationsfollowedThresholdsaturationeffectsemergedrelationshipdemonstratedmoderatestrong8480-0878174-0885448-05957CI49-065exhibitedAcrosspopulationzerotwothreefourfive48377111and < 01%lifetimeexposure21229248%Conclusion:demonstratesubstantialoverlapalongsidenuanceddifferencesshapeuniquepatternexhibits"intermediate"reflectedaverageUnderstandingdynamicsmodelingpublichealthinfections/diseases

Similar Articles

Cited By