Impact of GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis.

Mengdi Zhao, Yuanyuan Zhang, Yueyao Li, Keyuan Liu, Kun Bao, Guangyu Li
Author Information
  1. Mengdi Zhao: College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.
  2. Yuanyuan Zhang: College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.
  3. Yueyao Li: College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.
  4. Keyuan Liu: College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.
  5. Kun Bao: College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.
  6. Guangyu Li: College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.

Abstract

There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 10 CFU/day/dog), MG group (2 × 10 CFU/day/dog), and HG group (2 × 10 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups ( < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group ( < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups ( < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups ( < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups ( < 0.05). In addition, compared with the CK group, the abundance of and increased in the LG group, and the relative abundance of and increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (, , and ) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups ( < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group ( < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.

Keywords

References

  1. Foods. 2021 Oct 27;10(11): [PMID: 34828880]
  2. Probiotics Antimicrob Proteins. 2017 Sep;9(3):262-277 [PMID: 28188477]
  3. Food Microbiol. 2011 Aug;28(5):839-47 [PMID: 21569925]
  4. Food Microbiol. 2016 Feb;53(Pt A):51-9 [PMID: 26611169]
  5. Nat Rev Microbiol. 2021 Feb;19(2):77-94 [PMID: 32968241]
  6. Nat Rev Gastroenterol Hepatol. 2019 Oct;16(10):605-616 [PMID: 31296969]
  7. Int J Biol Macromol. 2021 Aug 31;185:1036-1049 [PMID: 34175337]
  8. J Vet Intern Med. 2019 Jul;33(4):1608-1618 [PMID: 31099928]
  9. Biol Trace Elem Res. 2023 Jul;201(7):3356-3366 [PMID: 36224317]
  10. Front Microbiol. 2022 Nov 25;13:1044986 [PMID: 36504773]
  11. Microbiome. 2023 May 8;11(1):102 [PMID: 37158970]
  12. J Lipid Res. 2013 Jul;54(7):1731-43 [PMID: 23625372]
  13. Curr Opin Gastroenterol. 2011 Oct;27(6):496-501 [PMID: 21897224]
  14. PLoS One. 2018 Mar 8;13(3):e0192978 [PMID: 29518093]
  15. Front Immunol. 2019 Apr 02;10:666 [PMID: 31001271]
  16. Beilstein J Nanotechnol. 2014 Aug 26;5:1357-70 [PMID: 25247119]
  17. Front Cell Infect Microbiol. 2021 Mar 18;11:655258 [PMID: 33816357]
  18. Anim Nutr. 2018 Jun;4(2):151-159 [PMID: 30140754]
  19. Ann Rheum Dis. 2010 Jan;69 Suppl 1:i92-96 [PMID: 19995755]
  20. Curr Opin Immunol. 2008 Apr;20(2):170-7 [PMID: 18456485]
  21. Nature. 2021 Oct;598(7882):657-661 [PMID: 34646015]
  22. Cell Host Microbe. 2018 Sep 12;24(3):364-378.e6 [PMID: 30212649]
  23. Animals (Basel). 2019 Aug 20;9(8): [PMID: 31434237]
  24. Am J Physiol Gastrointest Liver Physiol. 2013 Dec;305(12):G900-10 [PMID: 24136789]
  25. Curr Res Food Sci. 2022 Apr 27;5:775-788 [PMID: 35520273]
  26. Front Microbiol. 2022 Jul 04;13:838164 [PMID: 35859746]
  27. Anim Biosci. 2020 Jan;33(1):120-126 [PMID: 36379222]
  28. J Appl Microbiol. 2010 Sep;109(3):851-62 [PMID: 20353430]
  29. iScience. 2021 Dec 16;25(1):103644 [PMID: 35005566]
  30. Med Sci (Paris). 2015 Jun-Jul;31(6-7):617-21 [PMID: 26152165]
  31. Nature. 2008 Jul 24;454(7203):428-35 [PMID: 18650913]
  32. Food Chem Toxicol. 2023 Feb;172:113604 [PMID: 36623685]
  33. BMC Vet Res. 2022 Dec 24;18(1):451 [PMID: 36564781]
  34. Food Funct. 2019 Mar 20;10(3):1736-1746 [PMID: 30855043]
  35. Dig Liver Dis. 2018 May;50(5):421-428 [PMID: 29567414]
  36. J Dairy Sci. 1976 Jun;59(6):1068-77 [PMID: 819474]
  37. ISME J. 2019 Jun;13(6):1520-1534 [PMID: 30742017]
  38. Microb Ecol. 2017 Oct;74(3):709-721 [PMID: 28439658]
  39. J Anim Sci. 2021 Dec 1;99(12): [PMID: 34962977]
  40. Anim Nutr. 2021 Mar;7(1):152-162 [PMID: 33997343]
  41. Probiotics Antimicrob Proteins. 2018 Mar;10(1):11-21 [PMID: 28861741]
  42. J Anim Sci. 2022 Mar 1;100(3): [PMID: 35180312]
  43. Res Vet Sci. 2017 Jun;112:161-166 [PMID: 28433933]
  44. Trends Immunol. 2017 Mar;38(3):168-180 [PMID: 28094101]
  45. Gut Microbes. 2015;6(1):33-47 [PMID: 25531678]
  46. Food Funct. 2021 Nov 15;12(22):11241-11249 [PMID: 34704999]
  47. Annu Rev Immunol. 2016 May 20;34:369-94 [PMID: 27168242]
  48. Front Microbiol. 2023 Feb 13;14:1128271 [PMID: 36860489]
  49. Benef Microbes. 2020 Sep 1;11(5):411-455 [PMID: 32865024]
  50. Cell Host Microbe. 2011 Oct 20;10(4):336-47 [PMID: 22018234]
  51. Crit Rev Food Sci Nutr. 2019;59(sup1):S130-S152 [PMID: 30580556]
  52. Poult Sci. 2023 Sep;102(9):102858 [PMID: 37390550]
  53. Microb Ecol. 2016 Nov;72(4):931-942 [PMID: 26162534]
  54. Nutr Metab Cardiovasc Dis. 2005 Aug;15(4):316-28 [PMID: 16054557]
  55. Vet Rec. 2006 Mar 11;158(10):334-41 [PMID: 16531582]
  56. Vet Comp Oncol. 2021 Mar;19(1):25-33 [PMID: 32562450]
  57. Sci Rep. 2018 Apr 12;8(1):5878 [PMID: 29650991]
  58. Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):506-14 [PMID: 24912386]
  59. Benef Microbes. 2017 Apr 26;8(2):143-151 [PMID: 28008787]
  60. Front Microbiol. 2023 May 15;14:1179953 [PMID: 37256049]
  61. Trends Immunol. 2013 May;34(5):208-15 [PMID: 23485516]
  62. Anaerobe. 2015 Aug;34:14-23 [PMID: 25863311]

Word Cloud

Created with Highcharts 10.0.0groupHGCKincreasedgroupssignificantly< 005MGcomparedLGadultgutprobioticsprobioticGLP06beaglesmetabolome2 × 10 CFU/day/dogcontentactivityacidpotentialhealthanimalsstudyreceivedstandarddiettotalantioxidantimmunoglobulinabundancerelativeanalysismetabolitesmicrobiotagrowinginterestbenefitshumansaimedinvestigateeffectsfeedingcanine-derivedanalysingmicrobiomeTwenty-fourhealthyrandomlyassignedfourthreesupplementedvaryingamountsresultsshowcapacitysuperoxidedismutasecatalaseComparedmalondialdehydebloodureanitrogendecreasedAdditionallysecretoryGadditionαdiversityabundancesbeneficialbacteriahigherFurthermoreaceticButyricisobutyricSCFAMoreoverrevealed111upregulated171downregulatedconclusionpresentsevidencesupplementingcanpositiveimpactimmunoproteinsSCFAsfindingshighlightdietaryinterventionenhanceoverallwellbeingcompanionImpactsupplementationmicrobesbeagles:comparativebeagleshort-chainfattyacids

Similar Articles

Cited By