A comparative analysis of deep learning-based location-adaptive threshold method software against other commercially available software.

Daebeom Park, Eun-Ah Park, Baren Jeong, Whal Lee
Author Information
  1. Daebeom Park: Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul, Korea.
  2. Eun-Ah Park: Department of Radiology, Seoul National University Hospital, Seoul, Korea.
  3. Baren Jeong: Department of Radiology, Seoul National University Hospital, Seoul, Korea.
  4. Whal Lee: Department of Radiology, Seoul National University Hospital, Seoul, Korea. whal.lee@gmail.com.

Abstract

Automatic segmentation of the coronary artery using coronary computed tomography angiography (CCTA) images can facilitate several analyses related to coronary artery disease (CAD). Accurate segmentation of the lumen or plaque region is one of the most important factors. This study aimed to analyze the performance of the coronary artery segmentation of a software platform with a deep learning-based location-adaptive threshold method (DL-LATM) against commercially available software platforms using CCTA. The dataset from intravascular ultrasound (IVUS) of 26 vessel segments from 19 patients was used as the gold standard to evaluate the performance of each software platform. Statistical analyses (Pearson correlation coefficient [PCC], intraclass correlation coefficient [ICC], and Bland-Altman plot) were conducted for the lumen or plaque parameters by comparing the dataset of each software platform with IVUS. The software platform with DL-LATM showed the bias closest to zero for detecting lumen volume (mean difference = -9.1 mm, 95% confidence interval [CI] = -18.6 to 0.4 mm) or area (mean difference = -0.72 mm, 95% CI = -0.80 to -0.64 mm) with the highest PCC and ICC. Moreover, lumen or plaque area in the stenotic region was analyzed. The software platform with DL-LATM showed the bias closest to zero for detecting lumen (mean difference = -0.07 mm, 95% CI = -0.16 to 0.02 mm) or plaque area (mean difference���=���1.70 mm, 95% CI���=���1.37 to 2.03 mm) in the stenotic region with significantly higher correlation coefficient than other commercially available software platforms (p���<���0.001). The result shows that the software platform with DL-LATM has the potential to serve as an aiding system for CAD evaluation.

Keywords

References

  1. Eur Heart J. 2005 Aug;26(15):1482-7 [PMID: 15840624]
  2. J Am Coll Cardiol. 2008 Jul 29;52(5):357-65 [PMID: 18652943]
  3. Neural Comput Appl. 2023;35(21):15343-15364 [PMID: 37273912]
  4. Korean J Radiol. 2021 May;22(5):688-696 [PMID: 33543843]
  5. Sci Rep. 2020 Mar 31;10(1):5711 [PMID: 32235882]
  6. BMC Med Imaging. 2016 Jan 19;16:9 [PMID: 26785613]
  7. JACC Cardiovasc Interv. 2013 Feb;6(2):149-57 [PMID: 23428006]
  8. J Am Coll Cardiol. 2011 Nov 1;58(19):1989-97 [PMID: 22032711]
  9. Front Physiol. 2023 Aug 22;14:1138257 [PMID: 37675283]
  10. JAMA. 2005 May 25;293(20):2471-8 [PMID: 15914747]
  11. Med Phys. 2017 Dec;44(12):6377-6389 [PMID: 28963779]
  12. J Med Syst. 2015 Oct;39(10):129 [PMID: 26310950]
  13. Eur Heart J. 2012 Apr;33(8):1007-16 [PMID: 22285583]
  14. Stat Methods Med Res. 1999 Jun;8(2):135-60 [PMID: 10501650]
  15. JACC Cardiovasc Imaging. 2015 Oct;8(10):1209-1222 [PMID: 26481846]
  16. J Am Coll Cardiol. 2013 Jun 4;61(22):2233-41 [PMID: 23562923]
  17. J Cardiovasc Comput Tomogr. 2009 May-Jun;3(3):190-204 [PMID: 19409872]
  18. Radiology. 2010 Nov;257(2):516-22 [PMID: 20829536]
  19. JACC Cardiovasc Interv. 2013 Mar;6(3):222-5 [PMID: 23517831]
  20. J Am Coll Cardiol. 2012 Mar 20;59(12):1045-57 [PMID: 22421298]
  21. Cell. 2019 Mar 21;177(1):132-145 [PMID: 30901535]
  22. Circulation. 1995 Apr 1;91(7):1944-51 [PMID: 7895351]
  23. Sci Rep. 2019 Mar 18;9(1):4752 [PMID: 30894636]
  24. Med Phys. 2019 Feb;46(2):576-589 [PMID: 30480818]
  25. Nat Genet. 2017 Jul;49(7):1113-1119 [PMID: 28530674]
  26. J Am Coll Cardiol. 2019 Jan 22;73(2):161-173 [PMID: 30654888]
  27. Psychol Bull. 1979 Mar;86(2):420-8 [PMID: 18839484]
  28. JACC Cardiovasc Imaging. 2022 Apr;15(4):626-628 [PMID: 35393065]
  29. J Am Coll Cardiol. 2010 Jul 13;56(3):177-84 [PMID: 20537493]
  30. Eur Heart J. 2012 Dec;33(24):3011-3 [PMID: 23117163]
  31. Eur Heart J. 2018 Nov 1;39(41):3682-3684 [PMID: 30383272]
  32. J Am Coll Cardiol. 2018 Jun 19;71(24):2756-2769 [PMID: 29802016]
  33. Sci Rep. 2021 Mar 10;11(1):5542 [PMID: 33692453]
  34. J Am Coll Cardiol. 2019 Sep 24;74(12):1608-1617 [PMID: 31537271]
  35. IEEE Trans Med Imaging. 2018 Dec;37(12):2663-2674 [PMID: 29994201]
  36. J Am Coll Cardiol. 2015 Dec 1;66(21):2315-2323 [PMID: 26475205]
  37. Comput Methods Programs Biomed. 2021 Aug;207:106210 [PMID: 34130088]
  38. PLoS One. 2014 Jan 29;9(1):e86949 [PMID: 24489811]
  39. PLoS One. 2015 Apr 02;10(3):e0121945 [PMID: 25835001]
  40. J Cardiovasc Dev Dis. 2023 Mar 28;10(4): [PMID: 37103022]
  41. BMC Public Health. 2021 Feb 25;21(1):401 [PMID: 33632204]
  42. Eur Heart J Cardiovasc Imaging. 2020 Feb 1;21(2):191-201 [PMID: 31093656]
  43. Med Image Anal. 2009 Dec;13(6):819-45 [PMID: 19818675]
  44. Eur Radiol Exp. 2020 Aug 20;4(1):50 [PMID: 32814998]
  45. Med Phys. 2022 Nov;49(11):6945-6959 [PMID: 35770676]
  46. Eur Radiol. 2022 Sep;32(9):6037-6045 [PMID: 35394183]
  47. N Engl J Med. 2018 Jul 19;379(3):250-259 [PMID: 29785878]
  48. Inf Process Med Imaging. 2009;21:528-39 [PMID: 19694291]

MeSH Term

Humans
Deep Learning
Coronary Artery Disease
Coronary Angiography
Software
Predictive Value of Tests
Computed Tomography Angiography
Reproducibility of Results
Coronary Vessels
Radiographic Image Interpretation, Computer-Assisted
Ultrasonography, Interventional
Female
Plaque, Atherosclerotic
Male
Middle Aged
Aged
Retrospective Studies

Word Cloud

Created with Highcharts 10.0.0softwaremmplatform=lumen-0segmentationcoronaryarteryplaqueDL-LATMmean95%regionlearning-basedlocation-adaptivethresholdmethodcommerciallyavailablecorrelationcoefficientdifferenceareaAutomaticusingcomputedtomographyangiographyCCTAanalysesdiseaseCADperformancedeepplatformsdatasetIVUSshowedbiasclosestzerodetecting0CIstenoticCoronaryimagescanfacilitateseveralrelatedAccurateoneimportantfactorsstudyaimedanalyzeintravascularultrasound26vesselsegments19patientsusedgoldstandardevaluateStatisticalPearson[PCC]intraclass[ICC]Bland-Altmanplotconductedparameterscomparingvolume-91confidenceinterval[CI]-1864728064highestPCCICCMoreoveranalyzed071602difference���=���170CI���=���137203significantlyhigherp���<���0001resultshowspotentialserveaidingsystemevaluationcomparativeanalysisDeepSoftware

Similar Articles

Cited By