Novel enzyme-resistant pancreatic polypeptide analogs evoke pancreatic beta-cell rest, enhance islet cell turnover, and inhibit food intake in mice.

Wuyun Zhu, Neil Tanday, Ryan A Lafferty, Peter R Flatt, Nigel Irwin
Author Information
  1. Wuyun Zhu: Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK.
  2. Neil Tanday: Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK.
  3. Ryan A Lafferty: Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK.
  4. Peter R Flatt: Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK.
  5. Nigel Irwin: Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK. ORCID

Abstract

Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P]PP, [KPal]PP, [P,KPal]PP, [N-Pal]PP, and [N-Pal,P]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10 and 10 M), and especially [P]PP and [KPal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.

Keywords

References

  1. Peptides. 2023 Feb;160:170923 [PMID: 36509169]
  2. J Clin Endocrinol Metab. 2003 Aug;88(8):3989-92 [PMID: 12915697]
  3. Surgery. 1989 Dec;106(6):1128-32; discussion 1132-3 [PMID: 2588116]
  4. Diabetes Obes Metab. 2024 Jan;26(1):16-31 [PMID: 37845573]
  5. Br J Pharmacol. 2016 Nov;173(22):3208-3221 [PMID: 27545829]
  6. J Am Coll Cardiol. 2009 Sep 1;54(10):944-54 [PMID: 19712806]
  7. Biochem Soc Trans. 2008 Jun;36(Pt 3):343-7 [PMID: 18481954]
  8. Biol Chem. 2007 Feb;388(2):173-9 [PMID: 17261080]
  9. Front Endocrinol (Lausanne). 2023 Jun 02;14:1192311 [PMID: 37334299]
  10. Cell Metab. 2019 Apr 2;29(4):837-843.e5 [PMID: 30773465]
  11. Diabetologia. 2012 Oct;55(10):2747-2758 [PMID: 22814764]
  12. Endocrinology. 2017 Jun 1;158(6):1755-1765 [PMID: 28323997]
  13. PLoS One. 2018 May 14;13(5):e0197407 [PMID: 29758051]
  14. Front Endocrinol (Lausanne). 2013 Feb 04;4:5 [PMID: 23382728]
  15. Pharmacol Rev. 1998 Mar;50(1):143-50 [PMID: 9549761]
  16. Br J Nutr. 2007 Mar;97(3):426-9 [PMID: 17313701]
  17. Diabetes. 2002 Jun;51(6):1714-21 [PMID: 12031957]
  18. Front Endocrinol (Lausanne). 2021 Feb 25;12:633625 [PMID: 33716983]
  19. Mol Pharmacol. 2005 Nov;68(5):1439-54 [PMID: 16099846]
  20. Diabetes Obes Metab. 2020 Mar;22(3):404-416 [PMID: 31692207]
  21. Horm Metab Res. 1982 Mar;14(3):127-30 [PMID: 7040198]
  22. Gut. 1978 Oct;19(10):907-9 [PMID: 568585]
  23. Am J Physiol Regul Integr Comp Physiol. 2004 Jul;287(1):R228-33 [PMID: 15044188]
  24. J Pharmacol Exp Ther. 2006 Aug;318(2):914-21 [PMID: 16648370]
  25. Diabetes Obes Metab. 2022 Dec;24(12):2353-2363 [PMID: 35848461]
  26. Gastroenterology. 1999 Dec;117(6):1427-32 [PMID: 10579984]
  27. Diabetologia. 2021 Dec;64(12):2803-2816 [PMID: 34498099]
  28. J Biol Chem. 2014 Feb 28;289(9):5846-59 [PMID: 24375409]
  29. Cell Physiol Biochem. 2018;45(1):88-107 [PMID: 29310113]
  30. Curr Opin Endocrinol Diabetes Obes. 2021 Apr 1;28(2):253-261 [PMID: 33395088]
  31. Diabetes Obes Metab. 2024 Jan;26(1):329-338 [PMID: 37818589]
  32. Nat Commun. 2021 Jul 22;12(1):4458 [PMID: 34294685]
  33. Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):749-758 [PMID: 28069397]
  34. J Diabetes Sci Technol. 2011 Nov 01;5(6):1521-8 [PMID: 22226275]
  35. J Med Chem. 2021 Mar 11;64(5):2801-2814 [PMID: 33595306]
  36. Br J Pharmacol. 2011 Jul;163(6):1170-202 [PMID: 21545413]
  37. J Med Chem. 2005 Feb 24;48(4):1244-50 [PMID: 15715491]
  38. J Clin Endocrinol Metab. 2005 Sep;90(9):5241-6 [PMID: 15998783]
  39. Front Endocrinol (Lausanne). 2021 May 14;12:674704 [PMID: 34054734]
  40. PLoS One. 2013 Jul 18;8(7):e68559 [PMID: 23874671]
  41. J Med Chem. 2007 Nov 29;50(24):6126-32 [PMID: 17975905]
  42. Indian J Endocrinol Metab. 2013 May;17(3):413-21 [PMID: 23869296]
  43. PLoS One. 2009 Sep 17;4(9):e7070 [PMID: 19759915]
  44. J Med Chem. 2006 Feb 9;49(3):1047-54 [PMID: 16451070]
  45. Biofactors. 2024 Nov-Dec;50(6):1101-1112 [PMID: 38635341]
  46. Mol Metab. 2022 Jan;55:101407 [PMID: 34844019]
  47. Biochem Biophys Res Commun. 2002 Feb 8;290(5):1420-6 [PMID: 11820780]
  48. Gastroenterology. 1983 Dec;85(6):1411-25 [PMID: 6138294]
  49. Gastroenterology. 2003 May;124(5):1325-36 [PMID: 12730873]
  50. Mol Metab. 2022 Jan;55:101413 [PMID: 34890851]
  51. Expert Opin Pharmacother. 2023 Apr;24(5):587-597 [PMID: 36927378]
  52. Peptides. 2007 Feb;28(2):459-63 [PMID: 17207558]
  53. Health Technol Assess. 2011 May;15 Suppl 1:77-86 [PMID: 21609656]
  54. Neuropeptides. 2004 Aug;38(4):267-75 [PMID: 15337379]
  55. ChemMedChem. 2014 Nov;9(11):2463-74 [PMID: 25156249]
  56. J Med Chem. 2022 Oct 27;65(20):14201-14220 [PMID: 36214844]
  57. Diabetes. 1996 Aug;45(8):1132-40 [PMID: 8690162]

Grants

  1. Project Grant 22/0006448/Diabetes UK
  2. /Ulster University Research Funding

MeSH Term

Animals
Insulin-Secreting Cells
Mice
Pancreatic Polypeptide
Eating
Receptors, Neuropeptide Y
Cell Proliferation
Apoptosis
Male
Dipeptidyl Peptidase 4
Insulin Secretion
Insulin
Cell Line

Chemicals

Pancreatic Polypeptide
Receptors, Neuropeptide Y
Dipeptidyl Peptidase 4
neuropeptide Y4 receptor
Insulin

Word Cloud

Created with Highcharts 10.0.0PPpancreaticanalogsbeta-cellpeptidespolypeptideeffectsacid[P]PP[N-PalP]PPsatietywelladditionDPP-4nativeamino[KPal]PP[N-Pal]PPappetiteregulationglucoseapoptosisproliferationmiceGLP-1CCKfoodintakerestisletcellturnoverPancreaticpostprandialhormonesecretedisletsactivatesneuropeptideY4receptorsNPY4Rsknowninducelevelendocrinepancreaslesscharacterizedrapidmetabolismdipeptidylpeptidase-4limitsinvestigationpeptideThereforepresentstudyfivenovelsubstitutedand/orfattyderivatizedsynthesizednamely[PKPal]PPimpactfunctionhomeostasisinvestigateddisplayedincreasedresistancedegradationinhibitedalanine-inducedinsulinsecretionBRIN-BD11betacellsNativerelated1010 Mespeciallysignificantlyprotectedcytokine-inducedpromotedcellulardependentNPY4Rbarringexceptevokeddose-dependent2575200 nmol/kgsuppressionaugmentingglucagon-likepeptide-1cholecystokinininducedreductionsobviousdetrimentaleffecttolerancenoticeablyimpairglucose-regulatoryactionsconclusionProsubstitutioneitheralonetogethermid-chainacylationcreatesbenefitsenergymayapplicabletreatmentdiabetesobesityNovelenzyme-resistantevokeenhanceinhibitbeta‐cell

Similar Articles

Cited By