Evolutionary graph theory beyond single mutation dynamics: on how network-structured populations cross fitness landscapes.

Yang Ping Kuo, Oana Carja
Author Information
  1. Yang Ping Kuo: Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA.
  2. Oana Carja: Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA. ORCID

Abstract

Spatially resolved datasets are revolutionizing knowledge in molecular biology, yet are under-utilized for questions in evolutionary biology. To gain insight from these large-scale datasets of spatial organization, we need mathematical representations and modeling techniques that can both capture their complexity, but also allow for mathematical tractability. Evolutionary graph theory utilizes the mathematical representation of networks as a proxy for heterogeneous population structure and has started to reshape our understanding of how spatial structure can direct evolutionary dynamics. However, previous results are derived for the case of a single new mutation appearing in the population and the role of network structure in shaping fitness landscape crossing is still poorly understood. Here we study how network-structured populations cross fitness landscapes and show that even a simple extension to a two-mutational landscape can exhibit complex evolutionary dynamics that cannot be predicted using previous single-mutation results. We show how our results can be intuitively understood through the lens of how the two main evolutionary properties of a network, the amplification and acceleration factors, change the expected fate of the intermediate mutant in the population and further discuss how to link these models to spatially resolved datasets of cellular organization.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2022 Jan 4;119(1): [PMID: 34983850]
  2. PLoS Comput Biol. 2020 Jan 17;16(1):e1007494 [PMID: 31951609]
  3. Biol Direct. 2016 Aug 23;11:41 [PMID: 27549612]
  4. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  5. Nature. 2018 Sep;561(7724):473-478 [PMID: 30185910]
  6. PLoS Comput Biol. 2020 Jan 17;16(1):e1007529 [PMID: 31951612]
  7. Nature. 2020 Feb;578(7794):278-283 [PMID: 32025033]
  8. Elife. 2013 Dec 17;2:e01169 [PMID: 24347543]
  9. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3490-4 [PMID: 16484371]
  10. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  11. Science. 2020 Mar 27;367(6485):1449-1454 [PMID: 32217721]
  12. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  13. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  14. Evolution. 1981 May;35(3):477-488 [PMID: 28563585]
  15. Theor Popul Biol. 1970 Nov;1(3):273-306 [PMID: 5527634]
  16. Genetics. 1943 Mar;28(2):114-38 [PMID: 17247074]
  17. Evolution. 1979 Mar;33(1Part1):234-251 [PMID: 28568063]
  18. PLoS Comput Biol. 2024 Mar 15;20(3):e1011905 [PMID: 38489353]
  19. Nature. 2021 Jul;595(7868):585-590 [PMID: 34163070]
  20. Proc Biol Sci. 2013 May 15;280(1762):20130211 [PMID: 23677339]
  21. Genetics. 2004 Mar;166(3):1571-9 [PMID: 15082570]
  22. Genetics. 2003 Jun;164(2):767-79 [PMID: 12807795]
  23. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  24. Proc Natl Acad Sci U S A. 2014 Jul 22;111 Suppl 3:10789-95 [PMID: 25024187]
  25. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10335-40 [PMID: 12925735]
  26. Gastroenterology. 2010 Jun;138(6):2059-72 [PMID: 20420946]
  27. PLoS Comput Biol. 2021 Feb 2;17(2):e1008695 [PMID: 33529219]
  28. Science. 2013 Mar 29;339(6127):1546-58 [PMID: 23539594]
  29. PLoS Genet. 2011 Apr;7(4):e1002056 [PMID: 21552329]
  30. Ann Appl Probab. 2015 Feb;25(1):104-115 [PMID: 26430352]
  31. Genetics. 1997 May;146(1):427-41 [PMID: 9136031]
  32. Evolution. 2005 Jun;59(6):1175-82 [PMID: 16050095]
  33. Nat Methods. 2018 Jan;15(1):39-46 [PMID: 29320487]
  34. Sci Rep. 2021 Sep 9;11(1):17979 [PMID: 34504152]
  35. J R Soc Interface. 2014 Oct 6;11(99): [PMID: 25142521]
  36. J Theor Biol. 2007 Jun 21;246(4):681-94 [PMID: 17350049]
  37. Phys Rev Lett. 2021 Nov 19;127(21):218102 [PMID: 34860074]
  38. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16226-31 [PMID: 12446840]
  39. J Theor Biol. 2006 Nov 7;243(1):86-97 [PMID: 16860343]
  40. J R Soc Interface. 2023 Mar;20(200):20220769 [PMID: 36919418]
  41. Commun Biol. 2019 Apr 23;2:137 [PMID: 31044162]
  42. Theor Popul Biol. 2009 Jun;75(4):286-300 [PMID: 19285994]
  43. Nat Commun. 2018 Jun 28;9(1):2532 [PMID: 29955044]
  44. Blood. 2000 Nov 15;96(10):3399-405 [PMID: 11071634]
  45. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14800-3 [PMID: 8962135]
  46. Genetics. 2007 Mar;175(3):1275-88 [PMID: 17179085]
  47. J Theor Biol. 2003 Aug 21;223(4):433-50 [PMID: 12875822]
  48. Cancer Metastasis Rev. 2013 Dec;32(3-4):423-48 [PMID: 23640024]
  49. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17935-40 [PMID: 25427794]
  50. Nat Genet. 2018 Apr;50(4):483-486 [PMID: 29610476]
  51. PLoS Comput Biol. 2014 Apr 24;10(4):e1003567 [PMID: 24762474]
  52. Genetics. 1964 Apr;49(4):561-76 [PMID: 17248204]
  53. Genetics. 1999 Mar;151(3):921-7 [PMID: 10049911]
  54. Nat Commun. 2020 Apr 21;11(1):1923 [PMID: 32317663]
  55. Science. 2007 Nov 16;318(5853):1108-13 [PMID: 17932254]
  56. Genet Res. 1970 Apr;15(2):221-5 [PMID: 5480754]
  57. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]
  58. PLoS Comput Biol. 2014 Aug 14;10(8):e1003778 [PMID: 25122220]
  59. J Math Biol. 2021 Feb 3;82(3):14 [PMID: 33534054]
  60. Nat Commun. 2015 Jan 16;6:6101 [PMID: 25592476]

Grants

  1. T32 EB009403/NIH HHS
  2. T32 EB009403/NIBIB NIH HHS
  3. R35 GM147445/NIGMS NIH HHS
  4. 2019266/United States-Israel Binational Science Foundation
  5. R35GM147445/NIGMS NIH HHS

MeSH Term

Mutation
Genetic Fitness
Models, Genetic
Evolution, Molecular
Genetics, Population

Word Cloud

Created with Highcharts 10.0.0evolutionarycanstructurefitnessdatasetsspatialmathematicalgraphtheorypopulationresultslandscapesresolvedbiologyorganizationEvolutionarydynamicsprevioussinglemutationnetworklandscapeunderstoodnetwork-structuredpopulationscrossshowSpatiallyrevolutionizingknowledgemolecularyetunder-utilizedquestionsgaininsightlarge-scaleneedrepresentationsmodelingtechniquescapturecomplexityalsoallowtractabilityutilizesrepresentationnetworksproxyheterogeneousstartedreshapeunderstandingdirectHoweverderivedcasenewappearingroleshapingcrossingstillpoorlystudyevensimpleextensiontwo-mutationalexhibitcomplexpredictedusingsingle-mutationintuitivelylenstwomainpropertiesamplificationaccelerationfactorschangeexpectedfateintermediatemutantdiscusslinkmodelsspatiallycellularbeyonddynamics:cellgraphsruggedstochastictunneling

Similar Articles

Cited By