Integrating Multisector Molecular Characterization into Personalized Peptide Vaccine Design for Patients with Newly Diagnosed Glioblastoma.

Tanner M Johanns, Elizabeth A R Garfinkle, Katherine E Miller, Alexandra J Livingstone, Kaleigh F Roberts, Lakshmi P Rao Venkata, Joshua L Dowling, Michael R Chicoine, Ralph G Dacey, Gregory J Zipfel, Albert H Kim, Elaine R Mardis, Gavin P Dunn
Author Information
  1. Tanner M Johanns: Division of Medical Oncology, Washington University School of Medicine, St. Louis, Missouri. ORCID
  2. Elizabeth A R Garfinkle: The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio. ORCID
  3. Katherine E Miller: The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio. ORCID
  4. Alexandra J Livingstone: Division of Medical Oncology, Washington University School of Medicine, St. Louis, Missouri. ORCID
  5. Kaleigh F Roberts: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri. ORCID
  6. Lakshmi P Rao Venkata: The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio. ORCID
  7. Joshua L Dowling: The Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri. ORCID
  8. Michael R Chicoine: Department of Neurosurgery, University of Missouri in Columbia, Columbia, Missouri. ORCID
  9. Ralph G Dacey: Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri. ORCID
  10. Gregory J Zipfel: The Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri. ORCID
  11. Albert H Kim: The Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri. ORCID
  12. Elaine R Mardis: The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio. ORCID
  13. Gavin P Dunn: Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts. ORCID

Abstract

PURPOSE: Outcomes for patients with glioblastoma (GBM) remain poor despite multimodality treatment with surgery, radiation, and chemotherapy. There are few immunotherapy options due to the lack of tumor immunogenicity. Several clinical trials have reported promising results with cancer vaccines. To date, studies have used data from a single tumor site to identify targetable antigens, but this approach limits the antigen pool and is antithetical to the heterogeneity of GBM. We have implemented multisector sequencing to increase the pool of neoantigens across the GBM genomic landscape that can be incorporated into personalized peptide vaccines called NeoVax.
PATIENTS AND METHODS: In this study, we report the findings of four patients enrolled onto the NeoVax clinical trial (NCT0342209).
RESULTS: Immune reactivity to NeoVax neoantigens was assessed in peripheral blood mononuclear cells pre- and post-NeoVax for patients 1 to 3 using IFN��-ELISPOT assay. A statistically significant increase in IFN�� producing T cells at the post-NeoVax time point for several neoantigens was observed. Furthermore, a post-NeoVax tumor biopsy was obtained from patient 3 and, upon evaluation, revealed evidence of infiltrating, clonally expanded T cells.
CONCLUSIONS: Collectively, our findings suggest that NeoVax stimulated the expansion of neoantigen-specific effector T cells and provide encouraging results to aid in the development of future neoantigen vaccine-based clinical trials in patients with GBM. Herein, we demonstrate the feasibility of incorporating multisector sampling in cancer vaccine design and provide information on the clinical applicability of clonality, distribution, and immunogenicity of the neoantigen landscape in patients with GBM.

References

  1. Oncoimmunology. 2019 Jan 25;8(4):e1561106 [PMID: 30906654]
  2. Cancer Discov. 2022 Jan;12(1):154-171 [PMID: 34610950]
  3. World J Clin Oncol. 2023 Apr 24;14(4):138-159 [PMID: 37124134]
  4. Neuro Oncol. 2022 Nov 2;24(11):1935-1949 [PMID: 35511454]
  5. Genome Med. 2019 Aug 28;11(1):56 [PMID: 31462330]
  6. Genome Biol. 2015 Jan 20;16:6 [PMID: 25600152]
  7. Nature. 2019 Jan;565(7738):240-245 [PMID: 30568303]
  8. J Virol. 2015 Apr;89(8):4517-26 [PMID: 25653453]
  9. Nat Genet. 2023 Oct;55(10):1686-1695 [PMID: 37709863]
  10. Genome Med. 2016 Jan 29;8(1):11 [PMID: 26825632]
  11. Neuro Oncol. 2023 Feb 14;25(2):339-350 [PMID: 35849035]
  12. Cell. 2020 Oct 15;183(2):347-362.e24 [PMID: 33064988]
  13. Neuro Oncol. 2018 Mar 27;20(4):472-483 [PMID: 29244145]
  14. PLoS Comput Biol. 2014 Aug 07;10(8):e1003665 [PMID: 25102416]
  15. Nature. 2019 Jan;565(7738):234-239 [PMID: 30568305]
  16. Nature. 2017 Jul 13;547(7662):217-221 [PMID: 28678778]
  17. PLoS One. 2019 Mar 14;14(3):e0213684 [PMID: 30870493]
  18. N Engl J Med. 2005 Mar 10;352(10):997-1003 [PMID: 15758010]
  19. Neuro Oncol. 2023 Jan 5;25(1):123-134 [PMID: 35419607]
  20. Nat Med. 2019 Mar;25(3):477-486 [PMID: 30742122]
  21. Pharmaceutics. 2022 May 10;14(5): [PMID: 35631612]
  22. Cancer Cell. 2022 Sep 12;40(9):1010-1026.e11 [PMID: 36027916]
  23. Nature. 2023 Jun;618(7963):144-150 [PMID: 37165196]
  24. Front Immunol. 2021 Mar 11;12:640725 [PMID: 33777034]
  25. N Engl J Med. 2005 Mar 10;352(10):987-96 [PMID: 15758009]
  26. Neuro Oncol. 2021 Oct 5;23(12 Suppl 2):iii1-iii105 [PMID: 34608945]

Grants

  1. /The Knight and Christopher Davidson Family Fund
  2. K12 CA167540/NCI NIH HHS
  3. R01NS112712/National Institute of Neurological Disorders and Stroke (NINDS)
  4. /The Schnuck Family Fund
  5. /The Alvin J. Siteman Cancer Center Investment Program
  6. R01 NS112712/NINDS NIH HHS
  7. /The Foundation for Barnes-Jewish Hospital
  8. P30 CA016058/NCI NIH HHS
  9. K12CA167540/National Institutes of Health (NIH)
  10. /Nationwide Foundation Innovation Fund

MeSH Term

Humans
Glioblastoma
Cancer Vaccines
Vaccines, Subunit
Precision Medicine
Antigens, Neoplasm
Female
Male
Middle Aged
Brain Neoplasms
Adult
Aged
Immunotherapy
Protein Subunit Vaccines

Chemicals

Cancer Vaccines
Vaccines, Subunit
Antigens, Neoplasm
Protein Subunit Vaccines

Word Cloud

Created with Highcharts 10.0.0patientsGBMclinicalNeoVaxcellstumorneoantigenspost-NeoVaxTimmunogenicitytrialsresultscancervaccinespoolmultisectorincreaselandscapefindings3provideneoantigenPURPOSE:OutcomesglioblastomaremainpoordespitemultimodalitytreatmentsurgeryradiationchemotherapyimmunotherapyoptionsduelackSeveralreportedpromisingdatestudiesuseddatasinglesiteidentifytargetableantigensapproachlimitsantigenantitheticalheterogeneityimplementedsequencingacrossgenomiccanincorporatedpersonalizedpeptidecalledPATIENTSANDMETHODS:studyreportfourenrolledontotrialNCT0342209RESULTS:Immunereactivityassessedperipheralbloodmononuclearpre-1usingIFN��-ELISPOTassaystatisticallysignificantIFN��producingtimepointseveralobservedFurthermorebiopsyobtainedpatientuponevaluationrevealedevidenceinfiltratingclonallyexpandedCONCLUSIONS:Collectivelysuggeststimulatedexpansionneoantigen-specificeffectorencouragingaiddevelopmentfuturevaccine-basedHereindemonstratefeasibilityincorporatingsamplingvaccinedesigninformationapplicabilityclonalitydistributionIntegratingMultisectorMolecularCharacterizationPersonalizedPeptideVaccineDesignPatientsNewlyDiagnosedGlioblastoma

Similar Articles

Cited By