Drug-Online: an online platform for drug-target interaction, affinity, and binding sites identification using deep learning.

Xin Zeng, Guang-Peng Su, Shu-Juan Li, Shuang-Qing Lv, Meng-Liang Wen, Yi Li
Author Information
  1. Xin Zeng: College of Mathematics and Computer Science, Dali University, Dali, 671003, China.
  2. Guang-Peng Su: College of Mathematics and Computer Science, Dali University, Dali, 671003, China.
  3. Shu-Juan Li: Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
  4. Shuang-Qing Lv: Institute of Surveying and Information Engineering West, Yunnan University of Applied Science, Dali, 671000, China.
  5. Meng-Liang Wen: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650000, China.
  6. Yi Li: College of Mathematics and Computer Science, Dali University, Dali, 671003, China. yili@dali.edu.cn.

Abstract

BACKGROUND: Accurately identifying drug-target interaction (DTI), affinity (DTA), and binding sites (DTS) is crucial for drug screening, repositioning, and design, as well as for understanding the functions of target. Although there are a few online platforms based on deep learning for drug-target interaction, affinity, and binding sites identification, there is currently no integrated online platforms for all three aspects.
RESULTS: Our solution, the novel integrated online platform Drug-Online, has been developed to facilitate drug screening, target identification, and understanding the functions of target in a progressive manner of "interaction-affinity-binding sites". Drug-Online platform consists of three parts: the first part uses the drug-target interaction identification method MGraphDTA, based on graph neural networks (GNN) and convolutional neural networks (CNN), to identify whether there is a drug-target interaction. If an interaction is identified, the second part employs the drug-target affinity identification method MMDTA, also based on GNN and CNN, to calculate the strength of drug-target interaction, i.e., affinity. Finally, the third part identifies drug-target binding sites, i.e., pockets. The method pt-lm-gnn used in this part is also based on GNN.
CONCLUSIONS: Drug-Online is a reliable online platform that integrates drug-target interaction, affinity, and binding sites identification. It is freely available via the Internet at http://39.106.7.26:8000/Drug-Online/ .

Keywords

References

  1. Molecules. 2023 Dec 08;28(24): [PMID: 38138496]
  2. Sci Rep. 2022 Oct 28;12(1):18200 [PMID: 36307509]
  3. Bioinformatics. 2022 Mar 28;38(7):1995-2002 [PMID: 35043942]
  4. Bioinformatics. 2023 Dec 1;39(12): [PMID: 38015872]
  5. Chem Sci. 2022 Jan 5;13(3):816-833 [PMID: 35173947]
  6. J Med Chem. 2004 Jun 3;47(12):2977-80 [PMID: 15163179]
  7. Bioinformatics. 2019 Jan 15;35(2):309-318 [PMID: 29982330]
  8. Comput Biol Med. 2022 Mar;142:105214 [PMID: 35030496]
  9. J Chem Inf Model. 2024 Apr 8;64(7):2878-2888 [PMID: 37610162]
  10. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34849575]
  11. Bioinformatics. 2020 Aug 15;36(16):4406-4414 [PMID: 32428219]
  12. Methods. 2023 Dec;220:126-133 [PMID: 37952703]
  13. Bioinformatics. 2018 Sep 1;34(17):i821-i829 [PMID: 30423097]
  14. Comput Biol Med. 2023 Dec;167:107621 [PMID: 37907030]
  15. Bioinformatics. 2021 May 23;37(8):1140-1147 [PMID: 33119053]
  16. J Phys Chem Lett. 2021 May 6;12(17):4247-4261 [PMID: 33904745]
  17. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33147620]
  18. Comput Biol Med. 2023 Nov;166:107512 [PMID: 37788507]
  19. Bioinformatics. 2022 Apr 28;38(9):2571-2578 [PMID: 35274672]
  20. IEEE/ACM Trans Comput Biol Bioinform. 2013 Jul-Aug;10(4):994-1008 [PMID: 24334392]
  21. Int J Mol Sci. 2021 Apr 23;22(9): [PMID: 33922714]
  22. IEEE J Biomed Health Inform. 2024 Aug;28(8):4544-4552 [PMID: 38190664]
  23. BMC Bioinformatics. 2023 Sep 7;24(1):334 [PMID: 37679724]
  24. Comput Math Methods Med. 2019 Nov 13;2019:1926156 [PMID: 31814842]
  25. Nucleic Acids Res. 2022 Jul 5;50(W1):W593-W597 [PMID: 35609995]
  26. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33834190]
  27. J Cheminform. 2021 Sep 8;13(1):65 [PMID: 34496970]
  28. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  29. J Chem Inf Model. 2023 Feb 27;63(4):1124-1132 [PMID: 36744300]
  30. J Chem Inf Model. 2024 Jan 8;64(1):289-300 [PMID: 38127815]
  31. J Chem Inf Model. 2021 Aug 23;61(8):4097-4107 [PMID: 34319727]
  32. Int J Mol Sci. 2021 Aug 20;22(16): [PMID: 34445696]
  33. J Chem Inf Model. 2019 Oct 28;59(10):4131-4149 [PMID: 31580672]
  34. Nat Protoc. 2024 Oct 14;: [PMID: 39402428]

Grants

  1. 202101BA070001-227/Yunnan Fundamental Research Projects
  2. 2023KF005/State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University
  3. 62366002/National Natural Sciences Foundation of China

MeSH Term

Deep Learning
Drug Interactions
Binding Sites
Drug Delivery Systems
Drug Evaluation, Preclinical

Word Cloud

Created with Highcharts 10.0.0drug-targetinteractionaffinitybindingsitesidentificationonlineplatformbasedparttargetlearningDrug-OnlinemethodGNNDrug-targetdrugscreeningunderstandingfunctionsplatformsdeepintegratedthreeneuralnetworksCNNalsoieBACKGROUND:AccuratelyidentifyingDTIDTADTScrucialrepositioningdesignwellAlthoughcurrentlyaspectsRESULTS:solutionnoveldevelopedfacilitateprogressivemanner"interaction-affinity-bindingsites"consistsparts:firstusesMGraphDTAgraphconvolutionalidentifywhetheridentifiedsecondemploysMMDTAcalculatestrengthFinallythirdidentifiespocketspt-lm-gnnusedCONCLUSIONS:reliableintegratesfreelyavailableviaInternethttp://39106726:8000/Drug-Online/Drug-Online:usingDeepOnline

Similar Articles

Cited By