Heavy Metals as Catalysts in the Evolution of Antimicrobial Resistance and the Mechanisms Underpinning Co-selection.
Chandra Kant Singh, Kushneet Kaur Sodhi, Pallee Shree, V Nitin
Author Information
Chandra Kant Singh: Department of Zoology, University of Delhi, Delhi, 110007, India. singh007ck@gmail.com. ORCID
Kushneet Kaur Sodhi: Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, 110007, India. kushneetsodhi936@gmail.com.
Pallee Shree: Department of Zoology, Lady Irwin College, University of Delhi, Delhi, 110001, India.
V Nitin: Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, 110075, India.
The menace caused by antibiotic resistance in bacteria is acknowledged on a global scale. Concerns over the same are increasing because of the selection pressure exerted by a huge number of different antimicrobial agents, including heavy metals. heavy metals are non-metabolizable and recalcitrant to degradation, therefore the bacteria can expel the pollutants out of the system and make it less harmful via different mechanisms. The selection of antibiotic-resistant bacteria may be influenced by heavy metals present in environmental reservoirs. Through co-resistance and cross-resistance processes, the presence of heavy metals in the environment can act as co-selecting agents, hence increasing resistance to both heavy metals and antibiotics. The horizontal gene transfer or mutation assists in the selection of mutant bacteria resistant to the polluted environment. Hence, bioremediation and biodegradation are sustainable methods for the natural clean-up of pollutants. This review sheds light on the occurrence of metal and antibiotic resistance in the environment via the co-resistance and cross-resistance mechanisms underpinning co-selection emphasizing the dearth of studies that specifically examine the method of co-selection in clinical settings. Furthermore, it is advised that future research incorporate both culture- and molecular-based methodologies to further our comprehension of the mechanisms underlying bacterial co- and cross-resistance to antibiotics and heavy metals.
References
Zalewska M, Błażejewska A, Czapko A, Popowska M (2021) Antibiotics and antibiotic resistance genes in animal manure–consequences of its application in agriculture. Front Microbiol 12:640
[DOI: 10.3389/fmicb.2021.610656]
Vats P, Kaur UJ, Rishi P (2022) Heavy metal-induced selection and proliferation of antibiotic resistance: a review. J Appl Microbiol 132(6):4058–4076
[PMID: 35170159]
Zhou L, Li S, Li F (2022) Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. Environ Res 215(Pt 2):114188. https://doi.org/10.1016/j.envres.2022.114188
[DOI: 10.1016/j.envres.2022.114188]
Bhattacharjee B, Ghosh S, Patra D, Haldar J (2022) Advancements in release-active antimicrobial biomaterials: a journey from release to relief. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14(1):e1745
[PMID: 34374498]
Sharda N, Kumar D, Thakur R, Sharma AK, Sankhyan S, Kumar A (2023) Environmental antibiotic resistance: recent trends, scope, and relevance. Water Air Soil Pollut 234(11):683
[DOI: 10.1007/s11270-023-06695-w]
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645
[PMID: 30349322]
WHO (2022) Episode #86—microbes are becoming resistant to antibiotics. 25 November 2022. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/media-resources/science-in-5/microbes-are-becoming-resistant-to-antibiotics
Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. Heavy Met 10:115–132
Romero JL, Grande Burgos MJ, Pérez-Pulido R, Gálvez A, Lucas R (2017) Resistance to antibiotics, biocides, preservatives and metals in bacteria isolated from seafoods: co-selection of strains resistant or tolerant to different classes of compounds. Front Microbiol 8:1650
[PMID: 28912764]
Kotlarska E, Łuczkiewicz A, Pisowacka M, Burzyński A (2015) Antibiotic resistance and prevalence of class 1 and 2 integrons in Escherichia coli isolated from two wastewater treatment plants, and their receiving waters (Gulf of Gdansk, Baltic Sea, Poland). Environ Sci Pollut Res 22:2018–2030
[DOI: 10.1007/s11356-014-3474-7]
Anand U, Reddy B, Singh VK, Singh AK, Kesari KK, Tripathi P et al (2021) Potential environmental and human health risks caused by antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and emerging contaminants (ECs) from municipal solid waste (MSW) landfill. Antibiotics 10(4):374
[PMID: 33915892]
Engin AB, Engin ED, Engin A (2023) Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. Environ Toxicol Pharmacol 98:104081
[PMID: 36805463]
Soni T, Pandit R, Blake D, Joshi C, Joshi M (2022) Comparative analysis of two next-generation sequencing platforms for analysis of antimicrobial resistance genes. J Glob Antimicrob Resist 31:167–174
[PMID: 36055548]
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DJ (2015) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16:1–14
[DOI: 10.1186/s12864-015-2153-5]
Cabral L, Júnior GVL, de Sousa STP, Dias ACF, Cadete LL, Andreote FD et al (2016) Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities. Environ Pollut 216:460–469
[PMID: 27297401]
Song J, Rensing C, Holm PE, Virta M, Brandt KK (2017) Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. Environ Sci Technol 51(5):3040–3047
[PMID: 28198616]
Song YP, Zhang L, Wang GN, Liu JX, Liu J, Wang JP (2017) Dual-dummy-template molecularly imprinted polymer combining ultra performance liquid chromatography for determination of fluoroquinolones and sulfonamides in pork and chicken muscle. Food Control 82:233–242
[DOI: 10.1016/j.foodcont.2017.07.002]
De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA et al (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33(3):10–1128
[DOI: 10.1128/CMR.00181-19]
Rabow S, Soares M, Rousk J (2023) Can heavy metal pollution induce soil bacterial community resistance to antibiotics in boreal forests? J Appl Ecol 60(2):237–250
[DOI: 10.1111/1365-2664.14322]
Knapp CW, McCluskey SM, Singh BK, Campbell CD, Hudson G, Graham DW (2011) Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS ONE 6(11):e27300
[PMID: 22096547]
Blázquez J, Rodríguez-Beltrán J, Matic I (2018) Antibiotic-induced genetic variation: how it arises and how it can be prevented. Annu Rev Microbiol 72:209–230
[PMID: 30200850]
Nautiyal A, Patil KN, Muniyappa K (2014) Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J Antimicrob Chemother 69(7):1834–1843
[PMID: 24722837]
Crane JK, Alvarado CL, Sutton MD (2021) Role of the SOS response in the generation of antibiotic resistance in vivo. Antimicrob Agents Chemother 65(7):e0001321. https://doi.org/10.1128/AAC.00013-21
[DOI: 10.1128/AAC.00013-21]
Hobman JL, Crossman LC (2015) Bacterial antimicrobial metal ion resistance. J Med Microbiol 64(5):471–497
[PMID: 25418738]
WHO (2012) DRAFT manual for case management of cutaneous leishmaniasis in the WHO Eastern Mediterranean Region. July 2012. http://www.emro.who.int/images/stories/zoonoses/Manual_leishmaniasis_edited_MB_draft_for_Web_1_5_13.pdf
WHO (2013) Expert Committee on control and surveillance of human African trypanosomiasis Geneva, 22–26 April 2013. https://apps.who.int/iris/bitstream/handle/10665/95732/9789241209847_eng.pdf;jsessionid=390CCCB432CA4EC254208AEF47FE578F?sequence=1
Pal C, Asiani K, Arya S, Rensing C, Stekel DJ, Larsson DJ, Hobman JL (2017) Metal resistance and its association with antibiotic resistance. Adv Microb Physiol 70:261–313
[PMID: 28528649]
WHO (2013) Nutrition landscape information system (NLIS). Nutrition and nutrition-related health and development data. https://www.who.int/data/nutrition/nlis/info/children-5-years-with-diarrhoea-receiving-oral-rehydration-solution-(ors)-and-zinc-supplement
Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, Dahoumane SA (2021) Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int J Mol Sci 22(3):989
[PMID: 33498184]
Zhang C, Xu C, Gao X, Yao Q (2022) Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12(5):2115
[PMID: 35265202]
Singh CK, Sodhi KK (2023) Antimicrobial resistance in the time of COVID-19. Appl Microbiol 3(4):1388–1391
[DOI: 10.3390/applmicrobiol3040093]
Singh CK, Sodhi KK (2023) The emerging significance of nanomedicine-based approaches to fighting COVID-19 variants of concern: a perspective on the nanotechnology’s role in COVID-19 diagnosis and treatment. Front Nanotechnol. https://doi.org/10.3389/fnano.2022.1084033
[DOI: 10.3389/fnano.2022.1084033]
Sodhi KK, Mishra LC, Singh CK, Kumar M (2022) Perspective on the heavy metal pollution and recent remediation strategies. Curr Res Microb Sci 3:100166
[PMID: 36518170]
Długosz O, Ochnik M, Sochocka M, Franz D, Orzechowska B, Anna CK et al (2022) Antimicrobial and antiviral activity of selenium sulphide nanoparticles synthesised in extracts from spices in natural deep eutectic solvents (NDES). Sustain Mater Technol 32:e00433
Joy A, Qureshi A (2020) Mercury in dental amalgam, online retail, and the minamata convention on mercury. Environ Sci Technol 54(22):14139–14142
[PMID: 33141561]
Ravanfar P, Wallace JS, Pace NC (2012) Diaper dermatitis: a review and update. Curr Opin Pediatr 24(4):472–479
[PMID: 22790100]
Esfahani MA, Ahmadi N, Keikha M, Adibi P, Sharma N, Moayyedi P (2017) Antacids, sucralfate and bismuth salts for functional dyspepsia. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD012686
[DOI: 10.1002/14651858.CD012686]
Wang X, Lan B, Fei H, Wang S, Zhu G (2021) Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. J Hazard Mater 411:124848
[PMID: 33858075]
Yang S, Zhao L, Chang X, Pan Z, Zhou B, Sun Y et al (2021) Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). Sci Total Environ 781:146679
[PMID: 33798888]
Yang Y, Liu G, Ye C, Liu W (2019) Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. J Hazard Mater 361:283–293
[PMID: 30212791]
Bergeron S, Boopathy R, Nathaniel R, Corbin A, LaFleur G (2015) Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. Int Biodeterior Biodegradation 102:370–374
[DOI: 10.1016/j.ibiod.2015.04.017]
Zhao H, Xia B, Fan C, Zhao P, Shen S (2012) Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci Total Environ 417:45–54
[PMID: 22257507]
Hu HW, Wang JT, Li J, Shi XZ, Ma YB, Chen D, He JZ (2017) Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environ Sci Technol 51(2):790–800
[PMID: 27977160]
Hu W, Huang B, Tian K, Holm PE, Zhang Y (2017) Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: levels, transfer and health risk. Chemosphere 167:82–90
[PMID: 27710846]
Zhao Y, Cocerva T, Cox S, Tardif S, Su JQ, Zhu YG, Brandt KK (2019) Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Sci Total Environ 656:512–520
[PMID: 30529954]
Zhu YG, Zhao YI, Li B, Huang CL, Zhang SY, Yu S et al (2017) Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol 2(4):1–7
[DOI: 10.1038/nmicrobiol.2016.270]
Zou HY, He LY, Gao FZ, Zhang M, Chen S, Wu DL et al (2021) Antibiotic resistance genes in surface water and groundwater from mining affected environments. Sci Total Environ 772:145516
[PMID: 33571766]
Das S, Singh CK, Sodhi KK, Singh VK (2023) Circular economy approaches for water reuse and emerging contaminant mitigation: innovations in water treatment. Environ Dev Sustain. https://doi.org/10.1007/s10668-023-04183-z
[DOI: 10.1007/s10668-023-04183-z]
Imran M, Das KR, Naik MM (2019) Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: an emerging health threat. Chemosphere 215:846–857
[PMID: 30359954]
Martins VV, Zanetti MO, Pitondo-Silva A, Stehling EG (2014) Aquatic environments polluted with antibiotics and heavy metals: a human health hazard. Environ Sci Pollut Res Int 21(9):5873–5878. https://doi.org/10.1007/s11356-014-2509-4
[DOI: 10.1007/s11356-014-2509-4]
Sarma B, Acharya C, Joshi SR (2010) Pseudomonads: a versatile bacterial group exhibiting dual resistance to metals and antibiotics. Afr J Microbiol Res 4(25):2828–2835
Deredjian A, Colinon C, Brothier E, Favre-Bonté S, Cournoyer B, Nazaret S (2011) Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa. Res Microbiol 162(7):689–700
[PMID: 21726631]
Xie WY, Yang XP, Li Q, Wu LH, Shen QR, Zhao FJ (2016) Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Environ Pollut 219:182–190
[PMID: 27814534]
Arnold BJ, Huang IT, Hanage WP (2022) Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol 20(4):206–218
[PMID: 34773098]
Ghosh A, Singh A, Ramteke PW, Singh VP (2000) Characterization of large plasmids encoding resistance to toxic heavy metals in Salmonella abortus equi. Biochem Biophys Res Commun 272(1):6–11
[PMID: 10872795]
Hasman H, Aarestrup FM (2002) tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother 46(5):1410–1416
[PMID: 11959576]
McIntosh D, Cunningham M, Ji B, Fekete FA, Parry EM, Clark SE et al (2008) Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. J Antimicrob Chemother 61(6):1221–1228
[PMID: 18375380]
Dennis JJ (2005) The evolution of IncP catabolic plasmids. Curr Opin Biotechnol 16(3):291–298
[PMID: 15961030]
Xu Y, Tan L, Li Q, Zheng X, Liu W (2022) Sublethal concentrations of heavy metals Cu and Zn can induce the emergence of bacterial multidrug resistance. Environ Technol Innov 27:102379
[DOI: 10.1016/j.eti.2022.102379]
Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33(2):430–449
[PMID: 19207745]
Hernández A, Mellado RP, Martínez JL (1998) Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae. Appl Environ Microbiol 64:4317–4320
[PMID: 9797283]
Iredell J, Brown J, Tagg K (2016) Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ. https://doi.org/10.1136/bmj.h6420
[DOI: 10.1136/bmj.h6420]
Nishino K, Nikaido E, Yamaguchi A (2007) Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 189(24):9066–9075
[PMID: 17933888]
Kaur UJ, Chopra A, Preet S, Raj K, Kondepudi KK, Gupta V, Rishi P (2021) Potential of 1-(1-napthylmethyl)-piperazine, an efflux pump inhibitor against cadmium-induced multidrug resistance in Salmonella enterica serovar Typhi as an adjunct to antibiotics. Braz J Microbiol 52:1303–1313
[PMID: 33851343]
Trammell R, Rajabimoghadam K, Garcia-Bosch I (2019) Copper-promoted functionalization of organic molecules: from biologically relevant Cu/O model systems to organometallic transformations. Chem Rev 119(4):2954–3031
[PMID: 30698952]
Harrison JJ, Tremaroli V, Stan MA, Chan CS, Vacchi-Suzzi C, Heyne BJ et al (2009) Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. Environ Microbiol 11(10):2491–2509
[PMID: 19555372]
Conejo MC, García I, Martínez-Martínez L, Picabea L, Pascual Á (2003) Zinc eluted from siliconized latex urinary catheters decreases OprD expression, causing carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 47:2313–2315
[PMID: 12821486]
Costa OY, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636
[PMID: 30083145]
García-Meza JV, Barrangue C, Admiraal W (2005) Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ Toxicol Chem 24(3):573–581
[PMID: 15779756]
Kidambi SP, Sundin GW, Palmer DA, Chakrabarty AM, Bender CL (1995) Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61(6):2172–2179
[PMID: 7793938]
Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W (2000) Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44(12):3357–3363
[PMID: 11083640]
Mancuso G, Midiri A, Gerace E, Biondo C (2021) Bacterial antibiotic resistance: the most critical pathogens. Pathogens 10(10):1310
[PMID: 34684258]
Castañeda-Barba S, Top EM, Stalder T (2023) Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat Rev Microbiol 22(1):18–32. https://doi.org/10.1038/s41579-023-00926-x
[DOI: 10.1038/s41579-023-00926-x]
Kothari A, Kumar P, Gaurav A, Kaushal K, Pandey A, Yadav SRM et al (2023) Association of antibiotics and heavy metal arsenic to horizontal gene transfer from multidrug-resistant clinical strains to antibiotic-sensitive environmental strains. J Hazard Mater 443:130260
[PMID: 36327832]
Sodhi KK, Singh CK (2022) Recent development in the sustainable remediation of antibiotics: a review. Total Environ Res Themes 3:100008
[DOI: 10.1016/j.totert.2022.100008]
Sodhi KK, Singh CK, Kumar M, Singh DK (2023) Whole-genome sequencing of Alcaligenes sp. strain MMA: insight into the antibiotic and heavy metal resistant genes. Front Pharmacol 14:1144561
[PMID: 37251338]
Bazzi W, Abou Fayad AG, Nasser A, Haraoui LP, Dewachi O, Abou-Sitta G, Nguyen V, Abara A, Karah N, Landecker H, Knapp C, McEvoy MM, Zaman MH, Higgins PG, Matar GM (2020) Heavy metal toxicity in armed conflicts potentiates AMR in A. baumannii by selecting for antibiotic and heavy metal co-resistance mechanisms. Front Microbiol 11:483936
[DOI: 10.3389/fmicb.2020.00068]
Siddiqui MT, Mondal AH, Gogry FA, Husain FM, Alsalme A, Haq QMR (2020) Plasmid-mediated ampicillin, quinolone, and heavy metal co-resistance among esbl-producing isolates from the Yamuna River, New Delhi, India. Antibiotics 9(11):826
[PMID: 33227950]
Sodhi KK, Singh CK (2023) A systematic review on the occurrence, fate, and remediation of SARS-CoV-2 in wastewater. Int J Environ Sci Technol 20(7):8073–8086
[DOI: 10.1007/s13762-022-04326-1]
Terreni M, Taccani M, Pregnolato M (2021) New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules 26(9):2671
[PMID: 34063264]
Chettri U, Nongkhlaw M, Joshi SR (2023) Molecular evidence for occurrence of heavy metal and antibiotic resistance genes among predominant metal tolerant Pseudomonas sp. and Serratia sp. prevalent in the Teesta River. Curr Microbiol 80(7):226
[PMID: 37227565]
Edet UO, Bassey IU, Joseph AP (2023) Heavy metal co-resistance with antibiotics amongst bacteria isolates from an open dumpsite soil. Heliyon 9(2):e13457
[PMID: 36820045]
Shen C, He M, Zhang J, Liu J, Su J, Dai J (2023) Effects of the coexistence of antibiotics and heavy metals on the fate of antibiotic resistance genes in chicken manure and surrounding soils. Ecotoxicol Environ Saf 263:115367
[PMID: 37586197]
Sun F, Xu Z, Fan L (2021) Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge. J Environ Manag 300:113754
[DOI: 10.1016/j.jenvman.2021.113754]
Domalaon R, Idowu T, Zhanel GG, Schweizer F (2018) Antibiotic hybrids: the next generation of agents and adjuvants against Gram-negative pathogens? Clin Microbiol Rev 31(2):e00077-17
[PMID: 29540434]
Ferrer-Espada R, Shahrour H, Pitts B, Stewart PS, Sánchez-Gómez S, Martínez-de-Tejada G (2019) A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci Rep 9(1):3452
[PMID: 30837499]
Sabatini S, Piccioni M, Felicetti T, De Marco S, Manfroni G, Pagiotti R et al (2017) Investigation on the effect of known potent S. aureus NorA efflux pump inhibitors on the staphylococcal biofilm formation. RSC Adv 7(59):37007–37014
[DOI: 10.1039/C7RA03859C]
Yang K, Zhang Y (2020) Reversal of heavy metal-induced antibiotic resistance by dandelion root extracts and taraxasterol. J Med Microbiol 69(8):1049–1061
[PMID: 32602832]
Singh CK, Sodhi KK, Mubarak MS (2023) Editorial: new drugs, approaches, and strategies to combat antimicrobial resistance. Front Pharmacol 14:1295623. https://doi.org/10.3389/fphar.2023.1295623
[DOI: 10.3389/fphar.2023.1295623]
Al-Musharafi SK (2016) Heavy metals in sewage treated effluents: pollution and microbial bioremediation from arid regions. Open Biotechnol J 10(1):352–362
[DOI: 10.2174/1874070701610010352]
He Z, Shen J, Li Q, Yang Y, Zhang D, Pan X (2023) Bacterial metal (loid) resistance genes (MRGs) and their variation and application in environment: a review. Sci Total Environ 871:162148
[PMID: 36758696]
Mathivanan K, Chandirika JU, Vinothkanna A, Yin H, Liu X, Meng D (2021) Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment—a review. Ecotoxicol Environ Saf 226:112863
[PMID: 34619478]
Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102
Issazadeh K, Jahanpour N, Pourghorbanali F, Raeisi G, Faekhondeh J (2013) Heavy metals resistance by bacterial strains. Ann Biol Res 4(2):60–63
Krishnamoorthy R, Venkateswaran V, Senthilkumar M, Anandham R, Selvakumar G, Kim K et al (2017) Potential microbiological approaches for the remediation of heavy metal-contaminated soils. In: Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts. pp 341–366
Mahamadi C (2011) Water hyacinth as a biosorbent: a review. Afr J Environ Sci Technol 5(13):1137–1145