Unveiling the consequences of early human saliva contamination on membranes for guided bone regeneration.

Marcel F Kunrath, Paula Milena Giraldo-Osorno, Karina Mendes, Ana T P C Gomes, Nuno Rosa, Marlene Barros, Christer Dahlin
Author Information
  1. Marcel F Kunrath: Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden. ORCID
  2. Paula Milena Giraldo-Osorno: Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
  3. Karina Mendes: Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal.
  4. Ana T P C Gomes: Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal.
  5. Nuno Rosa: Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal. ORCID
  6. Marlene Barros: Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal.
  7. Christer Dahlin: Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.

Abstract

AIMS: GBR membranes have various surface properties designed to elicit positive responses in regenerative clinical procedures; dental clinicians attempt to employ techniques to prevent the direct interaction of contaminated oral fluids with these biomaterials. However, saliva is uninterruptedly exhibited in oral surgical procedures applying GBR membranes, suggesting a persistent interaction with biomaterials and the surrounding oral tissues. This fundamental study aimed to investigate potential alterations in the physical, chemical, and key biological properties of membranes for guided bone regeneration (GBR) caused by isolated early interaction with human saliva.
METHODS: A reproducible step-by-step protocol for collecting and interacting human saliva with membranes was developed. Subsequently, membranes were evaluated for their physicochemical properties, protein quantification, DNA, and 16S rRNA levels viability of two different cell lines at 1 and 7 days, and ALP activity. Non-interacted membranes and pure saliva of donors were applied as controls.
RESULTS: Qualitative morphological alterations were noticed; DNA extraction and 16S quantification revealed significantly higher values. Furthermore, the viability of HGF-1 and MC3T3-E1 cells was significantly (p < .05) reduced following saliva interaction with biodegradable membranes. Saliva contamination did not prejudice PTFE membranes significantly in any biological assay.
CONCLUSIONS: These outcomes demonstrated a susceptible response of biodegradable membranes to isolated early human saliva interaction, suggesting impairment of structural morphology, reduced viability to HGF-1 and MC3T3-E1, and higher absorption/adherence of DNA/16S rRNA. As a result, clinical oral procedures may need corresponding refinements.

Keywords

References

  1. Nanomaterials (Basel). 2022 Jul 28;12(15): [PMID: 35957034]
  2. Int J Mol Sci. 2022 Feb 11;23(4): [PMID: 35216139]
  3. Clin Oral Implants Res. 2012 Jan;23(1):83-9 [PMID: 21518008]
  4. J Biomed Mater Res A. 2010 Mar 15;92(4):1518-27 [PMID: 19425078]
  5. BMC Oral Health. 2023 Jul 22;23(1):510 [PMID: 37481548]
  6. Clin Implant Dent Relat Res. 2019 Dec;21(6):1225-1234 [PMID: 31729828]
  7. J Periodontal Res. 2023 Dec;58(6):1272-1280 [PMID: 37787434]
  8. Clin Oral Implants Res. 2017 Mar;28(3):348-354 [PMID: 26923088]
  9. J Periodontal Res. 1996 Jan;31(1):57-65 [PMID: 8636877]
  10. J Clin Periodontol. 2008 Sep;35(8 Suppl):173-202 [PMID: 18724850]
  11. Clin Oral Implants Res. 2008 Jan;19(1):19-25 [PMID: 17956571]
  12. J Clin Periodontol. 2019 Jun;46 Suppl 21:103-123 [PMID: 30667525]
  13. Arch Oral Biol. 2012 May;57(5):556-66 [PMID: 22024405]
  14. Arch Oral Biol. 2017 Jan;73:295-301 [PMID: 27825074]
  15. ACS Biomater Sci Eng. 2023 Oct 9;9(10):5457-5478 [PMID: 37650638]
  16. J Periodontal Res. 2024 Dec;59(6):1196-1209 [PMID: 38644743]
  17. Clin Oral Implants Res. 1996 Dec;7(4):311-5 [PMID: 9151596]
  18. Cancer. 2007 Jan 1;109(1):54-9 [PMID: 17099862]
  19. Arch Oral Biol. 2012 Jul;57(7):853-64 [PMID: 22284344]
  20. Clin Oral Investig. 2012 Feb;16(1):69-77 [PMID: 21246386]
  21. Colloids Surf B Biointerfaces. 2023 Jun;226:113318 [PMID: 37075523]
  22. J Dent (Tehran). 2015 Jun;12(6):424-9 [PMID: 26884776]
  23. J Contemp Dent Pract. 2008 Mar 01;9(3):72-80 [PMID: 18335122]
  24. J Evid Based Dent Pract. 2012 Dec;12(4):182-9 [PMID: 23177493]
  25. Adv Healthc Mater. 2020 Oct;9(19):e2000707 [PMID: 32864879]
  26. J Dent Res. 2015 Jan;94(1):192-200 [PMID: 25297116]
  27. Eur J Oral Sci. 2017 Oct;125(5):315-337 [PMID: 28833567]
  28. J Microbiol Methods. 2011 Sep;86(3):351-6 [PMID: 21704084]
  29. Int J Oral Maxillofac Implants. 2017 Sep 22;33(1):41–50 [PMID: 28938030]
  30. Periodontol 2000. 2003;33:36-53 [PMID: 12950840]
  31. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005 Dec;100(6):666-73 [PMID: 16301146]
  32. J Periodontal Res. 2017 Dec;52(6):955-964 [PMID: 28617950]
  33. Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:165-177 [PMID: 30948050]
  34. Biomaterials. 2016 Apr;84:167-183 [PMID: 26828682]
  35. Clin Oral Implants Res. 2018 Mar;29(3):328-338 [PMID: 29368353]
  36. Dent Mater. 2012 Jul;28(7):703-21 [PMID: 22592164]
  37. Periodontol 2000. 2016 Feb;70(1):80-92 [PMID: 26662484]
  38. Biofouling. 2021 Aug;37(7):757-766 [PMID: 34396855]
  39. Dent Mater. 2013 Oct;29(10):1080-9 [PMID: 23953738]
  40. Periodontol 2000. 2023 Oct;93(1):9-25 [PMID: 38194351]
  41. Clin Oral Investig. 2021 Jun;25(6):4175-4183 [PMID: 33977387]
  42. Colloids Surf B Biointerfaces. 2021 Apr;200:111570 [PMID: 33460965]
  43. Materials (Basel). 2023 Jan 17;16(3): [PMID: 36769909]
  44. Arch Oral Biol. 1999 May;44 Suppl 1:S3-10 [PMID: 10414848]
  45. J Clin Periodontol. 2019 Jun;46 Suppl 21:82-91 [PMID: 31215114]
  46. Br Dent J. 2023 Mar;234(5):305-307 [PMID: 36899235]
  47. Int J Oral Maxillofac Implants. 2009 May-Jun;24(3):502-10 [PMID: 19587874]
  48. J Oral Implantol. 2022 Feb 1;48(1):27-36 [PMID: 34505160]
  49. Adv Colloid Interface Sci. 2019 Nov;273:102034 [PMID: 31518820]

Grants

  1. /Osteology Foundation
  2. /Stiftelsen Handlanden Hjalmar Svenssons
  3. /Fundação para a Ciência e a Tecnologia

MeSH Term

Humans
Saliva
Bone Regeneration
Membranes, Artificial
Mice
Animals
Cell Survival
Guided Tissue Regeneration, Periodontal
Polytetrafluoroethylene
RNA, Ribosomal, 16S
Cell Line
Biocompatible Materials
DNA
Surface Properties
Guided Tissue Regeneration

Chemicals

Membranes, Artificial
Polytetrafluoroethylene
RNA, Ribosomal, 16S
Biocompatible Materials
DNA

Word Cloud

Created with Highcharts 10.0.0membranessalivainteractionoralregenerationhumanGBRpropertiesproceduresguidedearlyviabilitysignificantlyclinicaldentalbiomaterialssuggestingalterationsbiologicalboneisolatedquantificationDNA16SrRNAhigherHGF-1MC3T3-E1reducedbiodegradablecontaminationAIMS:varioussurfacedesignedelicitpositiveresponsesregenerativecliniciansattemptemploytechniquespreventdirectcontaminatedfluidsHoweveruninterruptedlyexhibitedsurgicalapplyingpersistentsurroundingtissuesfundamentalstudyaimedinvestigatepotentialphysicalchemicalkeycausedMETHODS:reproduciblestep-by-stepprotocolcollectinginteractingdevelopedSubsequentlyevaluatedphysicochemicalproteinlevelstwodifferentcelllines17 daysALPactivityNon-interactedpuredonorsappliedcontrolsRESULTS:QualitativemorphologicalnoticedextractionrevealedvaluesFurthermorecellsp <05followingSalivaprejudicePTFEassayCONCLUSIONS:outcomesdemonstratedsusceptibleresponseimpairmentstructuralmorphologyabsorption/adherenceDNA/16SresultmayneedcorrespondingrefinementsUnveilingconsequencesbiocompatibilitymaterialsperiodontology

Similar Articles

Cited By