Disruption of Cholinergic Retinal Waves Alters Visual Cortex Development and Function.

Timothy J Burbridge, Jacob M Ratliff, Deepanjali Dwivedi, Uma Vrudhula, Francisco Alvarado-Huerta, Lucas Sjulson, Leena Ali Ibrahim, Lucas Cheadle, Gordon Fishell, Renata Batista-Brito
Author Information
  1. Timothy J Burbridge: Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115.
  2. Jacob M Ratliff: Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461.
  3. Deepanjali Dwivedi: Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115.
  4. Uma Vrudhula: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.
  5. Francisco Alvarado-Huerta: Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115.
  6. Lucas Sjulson: Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461.
  7. Leena Ali Ibrahim: Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, KSA.
  8. Lucas Cheadle: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.
  9. Gordon Fishell: Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115.
  10. Renata Batista-Brito: Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461.

Abstract

Retinal waves represent an early form of patterned spontaneous neural activity in the visual system. These waves originate in the retina before eye-opening and propagate throughout the visual system, influencing the assembly and maturation of subcortical visual brain regions. However, because it is technically challenging to ablate retina-derived cortical waves without inducing compensatory activity, the role these waves play in the development of the visual cortex remains unclear. To address this question, we used targeted conditional genetics to disrupt cholinergic retinal waves and their propagation to select regions of primary visual cortex, which largely prevented compensatory patterned activity. We find that loss of cholinergic retinal waves without compensation impaired the molecular and synaptic maturation of excitatory neurons located in the input layers of visual cortex, as well as layer 1 interneurons. These perinatal molecular and synaptic deficits also relate to functional changes observed at later ages. We find that the loss of perinatal cholinergic retinal waves causes abnormal visual cortex retinotopy, mirroring changes in the retinotopic organization of gene expression, and additionally impairs the processing of visual information. We further show that retinal waves are necessary for higher order processing of sensory information by impacting the state-dependent activity of layer 1 interneurons, a neuronal type that shapes neocortical state-modulation, as well as for state-dependent gain modulation of visual responses of excitatory neurons. Together, these results demonstrate that a brief targeted perinatal disruption of patterned spontaneous activity alters early cortical gene expression as well as synaptic and physiological development, and compromises both fundamental and, notably, higher-order functions of visual cortex after eye-opening.

References

  1. Neuron. 2018 Nov 7;100(3):684-699.e6 [PMID: 30269988]
  2. Annu Rev Neurosci. 2020 Jul 8;43:1-30 [PMID: 31299170]
  3. Annu Rev Cell Dev Biol. 2019 Oct 6;35:523-542 [PMID: 31283379]
  4. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]
  5. Brain Res. 1986 Nov;395(1):96-103 [PMID: 3779435]
  6. Neuron. 2016 Mar 2;89(5):1031-45 [PMID: 26898778]
  7. Front Neurosci. 2022 Jun 27;16:929469 [PMID: 35833090]
  8. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  9. Nat Neurosci. 2013 Dec;16(12):1864-9 [PMID: 24185423]
  10. Neuron. 2003 Dec 18;40(6):1147-60 [PMID: 14687549]
  11. Neuron. 2021 Aug 18;109(16):2519-2534 [PMID: 34293296]
  12. Cell. 2001 Apr 6;105(1):43-55 [PMID: 11301001]
  13. Cell. 2009 Oct 2;139(1):175-85 [PMID: 19804762]
  14. J Neurosci. 2000 Feb 15;20(4):1519-28 [PMID: 10662841]
  15. J Physiol. 2010 Jan 1;588(Pt 1):83-91 [PMID: 19917570]
  16. J Biol Chem. 2017 Feb 17;292(7):2729-2740 [PMID: 28031459]
  17. Neuron. 2018 Oct 10;100(1):120-134.e6 [PMID: 30308165]
  18. Cell Rep. 2021 Nov 9;37(6):109993 [PMID: 34758329]
  19. Nat Neurosci. 2018 Feb;21(2):218-227 [PMID: 29358666]
  20. Neurosci Biobehav Rev. 2020 Dec;119:37-51 [PMID: 32991906]
  21. J Neurosci. 2005 Jul 20;25(29):6929-38 [PMID: 16033903]
  22. Nat Neurosci. 2016 Feb;19(2):299-307 [PMID: 26691828]
  23. Nat Rev Neurosci. 2010 Jan;11(1):18-29 [PMID: 19953103]
  24. Nat Rev Neurosci. 2012 Jan 18;13(2):107-20 [PMID: 22251963]
  25. Neuron. 2005 Dec 8;48(5):797-809 [PMID: 16337917]
  26. Science. 1998 Mar 27;279(5359):2108-12 [PMID: 9516112]
  27. Nat Rev Neurosci. 2017 Mar;18(3):147-157 [PMID: 28179641]
  28. Nat Rev Neurosci. 2005 Mar;6(3):191-200 [PMID: 15738956]
  29. Nature. 2022 Jul;607(7918):330-338 [PMID: 35794483]
  30. Nat Protoc. 2013 Aug;8(8):1551-66 [PMID: 23868073]
  31. Nat Rev Neurosci. 2005 Nov;6(11):877-88 [PMID: 16261181]
  32. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  33. Semin Cell Dev Biol. 2021 Oct;118:24-34 [PMID: 34030948]
  34. Sci Rep. 2018 Oct 16;8(1):15288 [PMID: 30327571]
  35. Prog Brain Res. 2011;189:3-22 [PMID: 21489380]
  36. Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23242-23251 [PMID: 32503914]
  37. Nat Protoc. 2017 Jan;12(1):44-73 [PMID: 27929523]
  38. Neuron. 2016 Feb 3;89(3):521-35 [PMID: 26844832]
  39. Neuron. 2021 Jul 7;109(13):2150-2164.e5 [PMID: 34038743]
  40. J Neurophysiol. 2008 Dec;100(6):3253-63 [PMID: 18922954]
  41. J Physiol. 2016 May 15;594(10):2561-2 [PMID: 27173021]
  42. J Neurophysiol. 2006 Dec;96(6):3170-82 [PMID: 17110738]
  43. Nat Neurosci. 2006 May;9(5):676-81 [PMID: 16604068]
  44. Nature. 2011 Apr 21;472(7343):351-5 [PMID: 21460837]
  45. Neuron. 2015 May 6;86(3):740-54 [PMID: 25892300]
  46. Sci Rep. 2017 Jun 22;7(1):4037 [PMID: 28642492]
  47. Neuron. 2018 Jul 11;99(1):98-116.e7 [PMID: 29937280]
  48. J Physiol. 2016 May 15;594(10):2579-92 [PMID: 26864476]
  49. Curr Top Dev Biol. 2009;87:81-118 [PMID: 19427517]
  50. Nat Neurosci. 2018 Jan;21(1):120-129 [PMID: 29230054]
  51. Prog Brain Res. 2005;147:115-24 [PMID: 15581701]
  52. Nat Neurosci. 2016 Feb;19(2):335-46 [PMID: 26727548]
  53. J Neurosci. 2004 Sep 29;24(39):8459-69 [PMID: 15456819]
  54. Neuron. 2021 Nov 3;109(21):3473-3485.e5 [PMID: 34478630]
  55. Neuron. 2012 Jul 26;75(2):230-49 [PMID: 22841309]
  56. Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13638-43 [PMID: 18757739]
  57. Sci Rep. 2019 Mar 25;9(1):5037 [PMID: 30911152]
  58. Neuron. 2008 Feb 28;57(4):511-23 [PMID: 18304481]
  59. J Neurosci. 1999 Jun 1;19(11):4388-406 [PMID: 10341241]
  60. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  61. Adv Genet. 2014;86:277-307 [PMID: 25172353]
  62. Neuron. 2018 Oct 24;100(2):330-348 [PMID: 30359600]
  63. Neuron. 2011 Aug 11;71(3):425-32 [PMID: 21835340]
  64. Neuron. 2009 Oct 29;64(2):200-12 [PMID: 19874788]
  65. J Comp Neurol. 1996 May 20;369(1):64-82 [PMID: 8723703]
  66. J Neurosci. 2009 Oct 14;29(41):12909-18 [PMID: 19828805]
  67. J Neurosci. 2018 Oct 10;38(41):8772-8786 [PMID: 30150360]
  68. Nat Rev Neurosci. 2021 Nov;22(11):657-673 [PMID: 34545240]
  69. Neuron. 2015 Sep 23;87(6):1143-1161 [PMID: 26402600]
  70. J Neurosci. 2005 Jul 20;25(29):6921-8 [PMID: 16033902]
  71. Neuron. 2011 Dec 22;72(6):1040-54 [PMID: 22196338]
  72. Neuron. 2010 Feb 25;65(4):472-9 [PMID: 20188652]
  73. Neuron. 2013 Dec 4;80(5):1129-44 [PMID: 24314725]
  74. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  75. J Neurosci. 2008 Jan 2;28(1):292-303 [PMID: 18171946]
  76. Neuron. 2014 Dec 3;84(5):1049-64 [PMID: 25466916]
  77. Trends Neurosci. 2004 Jul;27(7):361 [PMID: 15219731]
  78. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12438-43 [PMID: 12213962]
  79. Front Syst Neurosci. 2020 Jun 09;14:29 [PMID: 32581733]
  80. Science. 1988 Oct 7;242(4875):87-9 [PMID: 3175636]
  81. Cell. 2014 Mar 13;156(6):1139-1152 [PMID: 24630718]
  82. Nature. 2018 Nov;563(7729):72-78 [PMID: 30382198]
  83. Nature. 2012 Oct 11;490(7419):219-25 [PMID: 23060192]
  84. Neurosci Res. 2000 Oct;38(2):123-30 [PMID: 11000438]
  85. Science. 2019 Apr 19;364(6437):255 [PMID: 31000656]
  86. Neuron. 2018 Aug 8;99(3):525-539.e10 [PMID: 30033152]
  87. J Neurosci. 2000 Oct 15;20(20):7672-81 [PMID: 11027228]
  88. Nat Rev Neurosci. 2008 Jul;9(7):557-68 [PMID: 18568015]
  89. J Neurosci. 2012 Jan 18;32(3):850-63 [PMID: 22262883]
  90. Annu Rev Neurosci. 2008;31:479-509 [PMID: 18558864]
  91. Neuron. 2002 Jan 31;33(3):357-67 [PMID: 11832224]
  92. Science. 2022 Aug 19;377(6608):845-850 [PMID: 35981041]
  93. Vis Neurosci. 2012 Jan;29(1):61-71 [PMID: 21787461]
  94. Nat Neurosci. 2015 Mar;18(3):393-401 [PMID: 25664912]
  95. Trends Neurosci. 2013 Apr;36(4):227-36 [PMID: 23237660]

Grants

  1. DP2 MH132943/NIMH NIH HHS
  2. R01 EY034310/NEI NIH HHS
  3. R01 NS131486/NINDS NIH HHS
  4. F31 NS120723/NINDS NIH HHS
  5. R37 MH071679/NIMH NIH HHS
  6. R01 NS081297/NINDS NIH HHS
  7. R21 MH133097/NIMH NIH HHS
  8. R01 EY034617/NEI NIH HHS
  9. R00 MH120051/NIMH NIH HHS

Word Cloud

Created with Highcharts 10.0.0visualwavesactivitycortexretinalpatternedcholinergicsynapticwellperinatalRetinalearlyspontaneoussystemeye-openingmaturationregionscorticalwithoutcompensatorydevelopmenttargetedfindlossmolecularexcitatoryneuronslayer1interneuronschangesgeneexpressionprocessinginformationstate-dependentrepresentformneuraloriginateretinapropagatethroughoutinfluencingassemblysubcorticalbrainHowevertechnicallychallengingablateretina-derivedinducingroleplayremainsunclearaddressquestionusedconditionalgeneticsdisruptpropagationselectprimarylargelypreventedcompensationimpairedlocatedinputlayersdeficitsalsorelatefunctionalobservedlateragescausesabnormalretinotopymirroringretinotopicorganizationadditionallyimpairsshownecessaryhigherordersensoryimpactingneuronaltypeshapesneocorticalstate-modulationgainmodulationresponsesTogetherresultsdemonstratebriefdisruptionaltersphysiologicalcompromisesfundamentalnotablyhigher-orderfunctionsDisruptionCholinergicWavesAltersVisualCortexDevelopmentFunction

Similar Articles

Cited By