S100A8/9 modulates perturbation and glycolysis of macrophages in allergic asthma mice.

Xiaoyi Ji, Chunhua Nie, Yuan Yao, Yu Ma, Huafei Huang, Chuangli Hao
Author Information
  1. Xiaoyi Ji: Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China.
  2. Chunhua Nie: Jiaxing Maternal and Child Health Hospital, Jiaxing, China.
  3. Yuan Yao: Jiaxing Maternal and Child Health Hospital, Jiaxing, China.
  4. Yu Ma: Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China.
  5. Huafei Huang: Jiaxing Maternal and Child Health Hospital, Jiaxing, China.
  6. Chuangli Hao: Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China.

Abstract

Background: Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma.
Methods: To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice.
Results: We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP.
Conclusion: S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.

Keywords

References

  1. Cells. 2023 Mar 24;12(7): [PMID: 37048067]
  2. Transl Res. 2018 Jan;191:1-14 [PMID: 29066321]
  3. Life Sci Alliance. 2023 Oct 5;6(12): [PMID: 37798121]
  4. J Immunol. 2018 Jun 1;200(11):3777-3789 [PMID: 29686054]
  5. Front Genet. 2023 Jan 12;13:1033572 [PMID: 36712881]
  6. Allergy Asthma Proc. 2019 Nov 1;40(6):385-388 [PMID: 31690376]
  7. Metallomics. 2023 Oct 4;15(10): [PMID: 37838477]
  8. Sci Rep. 2017 Aug 2;7(1):7143 [PMID: 28769058]
  9. Am J Respir Cell Mol Biol. 2015 Jun;52(6):772-84 [PMID: 25360868]
  10. Front Immunol. 2019 Oct 16;10:2346 [PMID: 31749791]
  11. Inflamm Res. 2021 Jul;70(7):777-787 [PMID: 34076707]
  12. Mediators Inflamm. 2015;2015:816460 [PMID: 26089604]
  13. Semin Immunol. 2015 Aug;27(4):267-75 [PMID: 26454572]
  14. Nat Commun. 2019 Sep 4;10(1):3981 [PMID: 31484922]
  15. Curr Allergy Asthma Rep. 2023 Jan;23(1):29-40 [PMID: 36441389]
  16. Mol Cell Biol. 2003 Apr;23(7):2564-76 [PMID: 12640137]
  17. Int J Biol Sci. 2021 Apr 23;17(7):1795-1807 [PMID: 33994863]
  18. Biochim Biophys Acta Mol Basis Dis. 2022 Oct 1;1868(10):166488 [PMID: 35835414]
  19. Clin Exp Immunol. 1986 Feb;63(2):261-70 [PMID: 3516464]
  20. Exp Mol Med. 2021 Jul;53(7):1170-1179 [PMID: 34285336]
  21. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17558-63 [PMID: 24101490]
  22. Mol Cell. 2022 Apr 7;82(7):1261-1277.e9 [PMID: 35305311]
  23. Clin Chest Med. 2019 Mar;40(1):71-85 [PMID: 30691718]
  24. Eur J Med Chem. 2018 Sep 5;157:1276-1291 [PMID: 30195238]
  25. Science. 2017 May 5;356(6337):513-519 [PMID: 28473584]
  26. Biochim Biophys Acta. 2006 Nov;1763(11):1298-306 [PMID: 17050004]
  27. Cell Mol Life Sci. 2021 Feb;78(4):1233-1261 [PMID: 33057840]
  28. J Allergy Clin Immunol Pract. 2014 Nov-Dec;2(6):645-8; quiz 649 [PMID: 25439351]
  29. Nat Commun. 2023 Nov 17;14(1):7441 [PMID: 37978190]
  30. Front Immunol. 2021 May 20;12:585595 [PMID: 34093515]
  31. Cell Stress Chaperones. 2022 May;27(3):273-283 [PMID: 35355227]
  32. Front Immunol. 2021 Nov 24;12:777665 [PMID: 34899735]
  33. Biomed Pharmacother. 2023 Apr;160:114363 [PMID: 36746096]
  34. Int Immunopharmacol. 2023 Jun;119:110254 [PMID: 37163921]
  35. Cells. 2021 Oct 30;10(11): [PMID: 34831186]
  36. Theranostics. 2023 Jun 19;13(11):3568-3581 [PMID: 37441601]
  37. Nat Med. 2007 Sep;13(9):1042-9 [PMID: 17767165]
  38. Front Immunol. 2021 Aug 12;12:708186 [PMID: 34456917]
  39. Cell Res. 2015 Jul;25(7):771-84 [PMID: 26045163]
  40. J Immunol. 2007 Oct 15;179(8):5367-77 [PMID: 17911623]
  41. Int Rev Immunol. 2015 Jan;34(1):82-100 [PMID: 25340307]
  42. Immunity. 2014 Jul 17;41(1):14-20 [PMID: 25035950]
  43. Clin Exp Allergy. 2022 Apr;52(4):518-529 [PMID: 34874580]
  44. Front Immunol. 2022 Dec 20;13:1056477 [PMID: 36605195]
  45. Nat Commun. 2020 Feb 26;11(1):1055 [PMID: 32103022]
  46. Front Med (Lausanne). 2020 May 21;7:191 [PMID: 32509793]
  47. J Asthma. 2022 Jun;59(6):1110-1115 [PMID: 33830849]
  48. Cell Mol Immunol. 2022 Apr;19(4):504-515 [PMID: 34983946]
  49. Biomed Pharmacother. 2022 Nov;155:113683 [PMID: 36095965]
  50. Apoptosis. 2022 Feb;27(1-2):14-21 [PMID: 35006493]
  51. Phytomedicine. 2021 Dec;93:153812 [PMID: 34753029]
  52. J Pineal Res. 2020 Aug;69(1):e12660 [PMID: 32323368]
  53. Cell Metab. 2015 Jan 6;21(1):65-80 [PMID: 25565206]
  54. Am J Physiol Lung Cell Mol Physiol. 2012 Feb 1;302(3):L300-7 [PMID: 22080752]
  55. J Korean Med Sci. 2020 Nov 09;35(43):e362 [PMID: 33169556]
  56. Immunity. 2019 Dec 17;51(6):997-1011.e7 [PMID: 31851905]
  57. J Asthma Allergy. 2023 Oct 06;16:1097-1113 [PMID: 37822519]
  58. Nat Immunol. 2019 May;20(5):571-580 [PMID: 30936493]

MeSH Term

Animals
Male
Mice
Asthma
Calgranulin A
Calgranulin B
Cytokines
Disease Models, Animal
Glycolysis
Macrophages
Mice, Inbred BALB C
Myeloid Differentiation Factor 88
NF-kappa B
Ovalbumin
Signal Transduction
Toll-Like Receptor 4

Chemicals

Calgranulin A
Calgranulin B
Cytokines
Myeloid Differentiation Factor 88
NF-kappa B
Ovalbumin
S100a8 protein, mouse
S100A9 protein, mouse
Toll-Like Receptor 4

Word Cloud

Created with Highcharts 10.0.0glycolysisS100A9asthmaS100A8macrophageallergicknockdowncellspolarizationmiceinhibitedsignalingpathwaylungTLR4/MyD88/NF-κBperturbationAllergicassociatedimmuneMacrophagesincreasedeffectsrolespathogenesisusedMH-SOVA-sensitizedchallengedinhibitor3-BPexpressionalsoinjuryinflammationpromotingS100A8/9Background:prevalentphenotypedisorderscommontypelungsCalprotectintwopro-inflammatorymoleculestargetToll-likereceptor4TLR4substantiallyserumpatientsseverestudyaimeddetermineS100A8/A9Methods:betterunderstandovalbuminOVA-inducedmousemodelswild-typemaleBALB/cEnzyme-linkedimmunosorbentassayquantitativereal-timepolymerasechainreactionflowcytometryhematoxylin-eosinstainingwesternblottingperformed3-bromopyruvateobservechangesResults:foundOVA-inducedinflammatorycytokinesbiomarkerpyroptosiscellproportionanti-inflammatorycytokineinterleukinIL-10mRNAevidenceddecreasedlactatekeyenzymeespeciallyactivityTLR4/myeloiddifferentiationprimaryresponsegene88MyD88/Nuclearfactorkappa-BNF-κBInterventionlipopolysaccharidesLPSabolishedbeneficialobservationshowedpromotedrespiratoryfunctionimprovedsuppressedlevelsactivationConverselyoverexpressionexacerbatedantagonizedConclusion:playcriticalInhibitionmaypotentialtherapeuticstrategymodulatesmacrophagesGlycolysis

Similar Articles

Cited By