Four recent insights suggest the need for more refined methods to assess the resistogenicity of doxycycline post exposure prophylaxis.

Thibaut Vanbaelen, Sheeba Santhini Manoharan-Basil, Chris Kenyon
Author Information
  1. Thibaut Vanbaelen: STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, 2000, Belgium.
  2. Sheeba Santhini Manoharan-Basil: STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, 2000, Belgium.
  3. Chris Kenyon: STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, 2000, Belgium.

Abstract

Two recently published randomized trials of doxycycline post exposure prophylaxis (PEP) have concluded that this intervention is highly effective at reducing the incidence of bacterial sexually transmitted infections (STIs) and has little or no risk of promoting the spread of antimicrobial resistance (AMR). In this perspective piece, we review four types of evidence that suggest that the risk of promoting AMR has been inadequately assessed in these studies. 1) The studies have all used proportion resistant as the outcome measure. This is a less sensitive measure of resistogenicity than MIC distribution. 2) These RCTs have not considered population-level pathways of AMR selection. 3) In populations with very high antimicrobial consumption such as PrEP cohorts, the relationship between antimicrobial consumption and resistance may be saturated. 4) Genetic linkage of AMR means that increased tetracycline use may select for AMR to not only tetracyclines but also other antimicrobials in STIs and other bacterial species. We recommend novel study designs to more adequately assess the AMR-inducing risk of doxycycline PEP.

Keywords

References

  1. Clin Infect Dis. 2024 Mar 20;78(3):803-805 [PMID: 37721151]
  2. Lancet. 2007 Feb 10;369(9560):482-90 [PMID: 17292768]
  3. Int J Antimicrob Agents. 2013 Apr;41(4):352-7 [PMID: 23332619]
  4. N Engl J Med. 2020 Nov 12;383(20):1941-1950 [PMID: 33176084]
  5. Emerg Infect Dis. 2018 Jul;24(7):1195-1203 [PMID: 29912682]
  6. Int J STD AIDS. 2021 Oct;32(12):1183-1184 [PMID: 34139924]
  7. Sex Transm Dis. 2017 Jun;44(6):376-379 [PMID: 28499290]
  8. Pharm Stat. 2009 Jan-Mar;8(1):50-61 [PMID: 18389492]
  9. Antimicrob Agents Chemother. 2016 Aug 22;60(9):5302-11 [PMID: 27324772]
  10. BMC Infect Dis. 2014 Jan 09;14:13 [PMID: 24405683]
  11. Int J STD AIDS. 2023 Nov;34(13):962-968 [PMID: 37466467]
  12. Antimicrob Agents Chemother. 1990 Apr;34(4):515-8 [PMID: 2188583]
  13. Lancet Infect Dis. 2023 Aug;23(8):e268-e269 [PMID: 37321241]
  14. Antimicrob Agents Chemother. 2019 Jan 29;63(2): [PMID: 30455242]
  15. mBio. 2022 Oct 26;13(5):e0199122 [PMID: 36154280]
  16. N Engl J Med. 2019 Jun 06;380(23):2271-2273 [PMID: 31167060]
  17. Lancet Infect Dis. 2019 Apr;19(4):419-428 [PMID: 30846277]
  18. J Appl Microbiol. 2008 Jul;105(1):279-89 [PMID: 18397263]
  19. BMC Infect Dis. 2024 Apr 4;24(1):376 [PMID: 38575877]
  20. Emerg Infect Dis. 2002 Apr;8(4):347-54 [PMID: 11971765]
  21. Int J STD AIDS. 2022 Mar;33(4):385-390 [PMID: 35094623]
  22. Am J Epidemiol. 2006 Jan 15;163(2):160-70 [PMID: 16319292]
  23. Sex Transm Infect. 2013 Dec;89 Suppl 4:iv47-51 [PMID: 24243880]
  24. Int J STD AIDS. 2020 Oct;31(12):1215-1218 [PMID: 32903136]
  25. Sci Rep. 2022 Jan 7;12(1):9 [PMID: 34997050]
  26. Lancet. 2005 Feb 12-18;365(9459):579-87 [PMID: 15708101]
  27. Scand J Infect Dis. 1983;15(3):293-302 [PMID: 6648373]
  28. Front Microbiol. 2022 May 31;13:901911 [PMID: 35711781]
  29. J Antimicrob Chemother. 2023 Jul 5;78(7):1561-1568 [PMID: 37129293]
  30. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12872-12877 [PMID: 30559200]
  31. J Infect Dis. 2021 Nov 16;224(9):1623-1624 [PMID: 33822092]
  32. Cold Spring Harb Perspect Med. 2016 Apr 01;6(4):a025387 [PMID: 26989065]
  33. Vet Sci. 2023 Jul 21;10(7): [PMID: 37505883]
  34. Sex Transm Dis. 2015 Feb;42(2):98-103 [PMID: 25585069]
  35. Open Forum Infect Dis. 2023 Sep 08;10(10):ofad462 [PMID: 37854109]
  36. J Med Microbiol. 2019 Feb;68(2):119-123 [PMID: 30520715]
  37. Clin Infect Dis. 2020 Jul 27;71(3):532-538 [PMID: 31504346]
  38. N Engl J Med. 2023 Apr 6;388(14):1296-1306 [PMID: 37018493]
  39. Euro Surveill. 2023 Nov;28(46): [PMID: 37971658]
  40. Clin Infect Dis. 2023 Sep 11;77(5):788-791 [PMID: 37138444]
  41. Clin Infect Dis. 2007 Apr 15;44(8):1091-5 [PMID: 17366456]
  42. Front Microbiol. 2022 Jan 18;12:781746 [PMID: 35116011]
  43. Lancet Infect Dis. 2018 Mar;18(3):308-317 [PMID: 29229440]
  44. N Engl J Med. 1979 May 10;300(19):1074-8 [PMID: 107450]

Word Cloud

Created with Highcharts 10.0.0AMRdoxycyclinePEPriskantimicrobialpostexposureprophylaxisbacterialSTIspromotingresistancesuggeststudiesresistantmeasureresistogenicityMICconsumptionPrEPmayassessTworecentlypublishedrandomizedtrialsconcludedinterventionhighlyeffectivereducingincidencesexuallytransmittedinfectionslittlespreadperspectivepiecereviewfourtypesevidenceinadequatelyassessed1usedproportionoutcomelesssensitivedistribution2RCTsconsideredpopulation-levelpathwaysselection3populationshighcohortsrelationshipsaturated4GeneticlinkagemeansincreasedtetracyclineuseselecttetracyclinesalsoantimicrobialsspeciesrecommendnovelstudydesignsadequatelyAMR-inducingFourrecentinsightsneedrefinedmethodsDoxycyclineGonorrhoeaProportionTetracycline

Similar Articles

Cited By

No available data.