Effects of biodiversity on functional stability of freshwater wetlands: a systematic review.

Aiwen Song, Shen Liang, Huai Li, Baixing Yan
Author Information
  1. Aiwen Song: State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
  2. Shen Liang: State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
  3. Huai Li: State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
  4. Baixing Yan: State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.

Abstract

Freshwater wetlands are the wetland ecosystems surrounded by freshwater, which are at the interface of terrestrial and freshwater ecosystems, and are rich in ecological composition and function. Biodiversity in freshwater wetlands plays a key role in maintaining the stability of their habitat functions. Due to anthropogenic interference and global change, the biodiversity of freshwater wetlands decreases, which in turn destroys the habitat function of freshwater wetlands and leads to serious degradation of wetlands. An in-depth understanding of the effects of biodiversity on the stability of habitat function and its regulation in freshwater wetlands is crucial for wetland conservation. Therefore, this paper reviews the environmental drivers of habitat function stability in freshwater wetlands, explores the effects of plant diversity and microbial diversity on habitat function stability, reveals the impacts and mechanisms of habitat changes on biodiversity, and further proposes an outlook for freshwater wetland research. This paper provides an important reference for freshwater wetland conservation and its habitat function enhancement.

Keywords

References

  1. Sci Total Environ. 2022 May 20;822:153512 [PMID: 35101500]
  2. ISME J. 2008 Aug;2(8):805-14 [PMID: 18615117]
  3. Environ Monit Assess. 2011 Sep;180(1-4):97-113 [PMID: 21125423]
  4. Sci Total Environ. 2022 Apr 20;818:151826 [PMID: 34822895]
  5. PLoS One. 2014 Aug 08;9(8):e104454 [PMID: 25105764]
  6. mSystems. 2019 Dec 3;4(6): [PMID: 31796563]
  7. Ecol Evol. 2021 Nov 03;11(22):16228-16238 [PMID: 34824823]
  8. Ambio. 2017 Feb;46(1):98-108 [PMID: 27380216]
  9. Biotechnol Adv. 2003 Dec;22(1-2):93-117 [PMID: 14623046]
  10. Ecol Evol. 2014 Aug;4(16):3298-308 [PMID: 25473482]
  11. J Ethnobiol Ethnomed. 2014 Oct 15;10:72 [PMID: 25318542]
  12. Environ Microbiol. 2008 Jul;10(7):1850-60 [PMID: 18373675]
  13. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11911-6 [PMID: 23818582]
  14. PLoS One. 2021 May 17;16(5):e0251748 [PMID: 33999932]
  15. Appl Microbiol Biotechnol. 2015 Dec;99(24):10779-91 [PMID: 26286511]
  16. Limnol Oceanogr. 2020 Jan 23;N/A:1-19 [PMID: 32704188]
  17. Appl Environ Microbiol. 2003 Jan;69(1):74-83 [PMID: 12513979]
  18. Sci Total Environ. 2022 Nov 25;849:157876 [PMID: 35940267]
  19. Am J Bot. 2011 Mar;98(3):572-92 [PMID: 21613148]
  20. Front Microbiol. 2022 Apr 05;13:845725 [PMID: 35450286]
  21. Environ Sci Technol. 2023 May 9;57(18):7206-7216 [PMID: 37116091]
  22. Sci Total Environ. 2018 May 15;624:1561-1576 [PMID: 29929265]
  23. Glob Chang Biol. 2013 Oct;19(10):2940-55 [PMID: 23744573]
  24. Front Microbiol. 2024 Feb 21;15:1354279 [PMID: 38450168]
  25. Fundam Res. 2023 Sep 29;3(6):831-832 [PMID: 38933001]
  26. Water Res. 2024 Mar 1;251:121105 [PMID: 38184913]
  27. Nat Ecol Evol. 2018 Jul;2(7):1071-1074 [PMID: 29784980]
  28. Sci Rep. 2018 Jan 15;8(1):760 [PMID: 29335587]
  29. Sci Total Environ. 2022 May 10;820:153052 [PMID: 35063522]
  30. J Environ Manage. 2023 Dec 1;347:119210 [PMID: 37801950]
  31. Front Microbiol. 2023 Jun 02;14:1163896 [PMID: 37333635]
  32. J Hazard Mater. 2021 Feb 15;404(Pt A):124125 [PMID: 33049629]
  33. Ecotoxicol Environ Saf. 2021 Dec 15;226:112822 [PMID: 34571419]
  34. FEMS Microbiol Ecol. 2019 Aug 1;95(8): [PMID: 31281933]
  35. Ecol Evol. 2020 Jan 22;10(3):1264-1277 [PMID: 32076512]
  36. Sci Total Environ. 2022 Aug 15;834:154936 [PMID: 35378189]
  37. Ecol Appl. 2020 Jun;30(4):e02074 [PMID: 31965659]
  38. Nat Commun. 2024 Jan 25;15(1):726 [PMID: 38272881]
  39. Appl Microbiol Biotechnol. 2015 Mar;99(6):2895-909 [PMID: 25381491]
  40. Sci Rep. 2017 Apr 12;7(1):837 [PMID: 28404992]
  41. Sci Total Environ. 2023 Nov 1;897:166190 [PMID: 37567310]
  42. FEMS Microbiol Ecol. 2016 Jan;92(1): [PMID: 26613748]
  43. Front Plant Sci. 2022 Aug 04;13:939762 [PMID: 35991434]
  44. Appl Environ Microbiol. 2018 Mar 19;84(7): [PMID: 29374038]
  45. J Environ Manage. 2016 Jan 1;165:133-139 [PMID: 26431640]
  46. FEMS Microbiol Ecol. 2022 Mar 16;98(3): [PMID: 35170736]
  47. Chemosphere. 2023 Jul;329:138627 [PMID: 37031839]
  48. Can J Microbiol. 2021 Nov;67(11):771-788 [PMID: 34233131]
  49. Environ Monit Assess. 2020 Feb 19;192(3):187 [PMID: 32072358]
  50. PLoS One. 2020 Jul 10;15(7):e0235225 [PMID: 32649660]
  51. Environ Manage. 2015 Apr;55(4):776-98 [PMID: 25365946]
  52. Science. 2024 Mar 15;383(6688):eadg8488 [PMID: 38484074]
  53. Sci Total Environ. 2018 Sep 1;635:1436-1443 [PMID: 29710596]

Word Cloud

Created with Highcharts 10.0.0freshwaterhabitatwetlandsfunctionstabilitybiodiversitywetlandecosystemschangeeffectsconservationpaperdiversitymechanismsfunctionalFreshwatersurroundedinterfaceterrestrialrichecologicalcompositionBiodiversityplayskeyrolemaintainingfunctionsDueanthropogenicinterferenceglobaldecreasesturndestroysleadsseriousdegradationin-depthunderstandingregulationcrucialThereforereviewsenvironmentaldriversexploresplantmicrobialrevealsimpactschangesproposesoutlookresearchprovidesimportantreferenceenhancementEffectswetlands:systematicreviewimpact

Similar Articles

Cited By (1)