Extent of Virulence and Antibiotic Resistance Genes in Helicobacter pylori and Campylobacteria.

R Shyama Prasad Rao, Sudeep D Ghate, Larina Pinto, Prashanth Suravajhala, Prakash Patil, Praveenkumar Shetty, Nagib Ahsan
Author Information
  1. R Shyama Prasad Rao: Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India. shyamaprasad.rao@nitte.edu.in. ORCID
  2. Sudeep D Ghate: Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India. sudeep.ghate@nitte.edu.in. ORCID
  3. Larina Pinto: Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India. ORCID
  4. Prashanth Suravajhala: Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India. ORCID
  5. Prakash Patil: Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), NITTE Deemed to be University, Mangaluru, 575018, India. ORCID
  6. Praveenkumar Shetty: Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), NITTE Deemed to be University, Mangaluru, 575018, India. ORCID
  7. Nagib Ahsan: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA. ORCID

Abstract

Helicobacter pylori, a member of the clade campylobacteria, is the leading cause of chronic gastritis and gastric cancer. Virulence and antibiotic resistance of H. pylori are of great concern to public health. However, the relationship between virulence and antibiotic resistance genes in H. pylori in relation to other campylobacteria remains unclear. Using the virulence and comprehensive antibiotic resistance databases, we explored all available 354 complete genomes of H. pylori and compared it with 90 species of campylobacteria for virulence and antibiotic resistance genes/proteins. On average, H. pylori had 129 virulence genes, highest among Helicobacter spp. and 71 antibiotic resistance genes, one of the lowest among campylobacteria. Just 2.6% of virulence genes were shared by all campylobacterial members, whereas 9.4% were unique to H. pylori. The cytotoxin-associated genes (cags) seemed to be exclusive to H. pylori. Majority of the isolates from Asia and South America were cag2-negative and many antibiotic resistance genes showed isolate-specific patterns of occurrence. Just 15 (8.8%) antibiotic resistance genes, but 103 (66%) virulence genes including 25 cags were proteomically identified in H. pylori. Arcobacterial members showed large variation in the number of antibiotic resistance genes and there was a positive relation with the genome size. Large repository of antibiotic resistance genes in campylobacteria and a unique set of virulence genes might have important implications in shaping the course of virulence and antibiotic resistance in H. pylori.

References

  1. Hooi JKY, Lai WY, Ng WK et al (2017) Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterol 153:P420–P429. https://doi.org/10.1053/j.gastro.2017.04.022 [DOI: 10.1053/j.gastro.2017.04.022]
  2. Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347:1175–1186. https://doi.org/10.1056/NEJMra020542 [DOI: 10.1056/NEJMra020542]
  3. Etemadi A, Safiri S, Sepanlou SG et al (2020) The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease study 2017. Lancet Gastroenterol Hepatol 5:42–54. https://doi.org/10.1016/S2468-1253(19)30328-0 [DOI: 10.1016/S2468-1253(19)30328-0]
  4. Chiang T-H, Chang W-J, Chen SL-S et al (2021) Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: A long-term cohort study on Matsu Islands. Gut 70:243–250. https://doi.org/10.1136/gutjnl-2020-322200 [DOI: 10.1136/gutjnl-2020-322200]
  5. Choi IJ, Kim CG, Lee JY et al (2020) Family history of gastric cancer and Helicobacter pylori treatment. N Engl J Med 382:427–436. https://doi.org/10.1056/NEJMoa1909666 [DOI: 10.1056/NEJMoa1909666]
  6. Malfertheiner P, Megraud F, O’Morain CA et al (2017) Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut 66:6–30. https://doi.org/10.1136/gutjnl-2016-312288 [DOI: 10.1136/gutjnl-2016-312288]
  7. Pasceri V, Cammarota G, Patti G et al (1998) Association of virulent Helicobacter pylori strains with ischemic heart disease. Circulation 97:1675–1679. https://doi.org/10.1161/01.CIR.97.17.1675 [DOI: 10.1161/01.CIR.97.17.1675]
  8. Hu Y, Zhu Y, Lu N-H (2017) Novel and effective therapeutic regimens for Helicobacter pylori in an era of increasing antibiotic resistance. Front Cell Infect Microbiol 7:168. https://doi.org/10.3389/fcimb.2017.00168 [DOI: 10.3389/fcimb.2017.00168]
  9. Savoldi A, Carrara E, Graham DY et al (2018) Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterol 155:1372-1382.e17. https://doi.org/10.1053/j.gastro.2018.07.007 [DOI: 10.1053/j.gastro.2018.07.007]
  10. Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3 [DOI: 10.1016/S1473-3099(17)30753-3]
  11. Gingold-Belfer R, Niv Y, Schmilovitz-Weiss H et al (2021) Susceptibility-guided versus empirical treatment for Helicobacter pylori infection: a systematic review and meta-analysis. J Gastroenterol Hepatol 36:2649–2658. https://doi.org/10.1111/jgh.15575 [DOI: 10.1111/jgh.15575]
  12. Megraud F, Bruyndonckx R, Coenen S et al (2021) Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut 70:1815–1822. https://doi.org/10.1136/gutjnl-2021-324032 [DOI: 10.1136/gutjnl-2021-324032]
  13. Nestegard O, Moayeri B, Halvorsen F-A et al (2022) Helicobacter pylori resistance to antibiotics before and after treatment: Incidence of eradication failure. PLoS ONE 17:e0265322. https://doi.org/10.1371/journal.pone.0265322 [DOI: 10.1371/journal.pone.0265322]
  14. Shu X, Ye D, Hu C et al (2022) Alarming antibiotics resistance of Helicobacter pylori from children in Southeast China over 6 years. Sci Rep 12:17754. https://doi.org/10.1038/s41598-022-21661-y [DOI: 10.1038/s41598-022-21661-y]
  15. Brennan DE, Dowd C, O’Morain C et al (2018) Can bacterial virulence factors predict antibiotic resistant Helicobacter pylori infection? World J Gastroenterol 24:971–981. https://doi.org/10.3748/wjg.v24.i9.971 [DOI: 10.3748/wjg.v24.i9.971]
  16. da Silva Benigno TG, Ribeiro Junior HL, de Azevedo OGR et al (2022) Clarithromycin-resistant H. pylori primary strains and virulence genotypes in the Northeastern region of Brazil. Revista do Instituto de Medicina Tropical de São Paulo 64:e47. https://doi.org/10.1590/s1678-9946202264047 [DOI: 10.1590/s1678-9946202264047]
  17. Hosseini RS, Rahimian G, Shafigh MH et al (2021) Correlation between clarithromycin resistance, virulence factors and clinical characteristics of the disease in Helicobacter pylori infected patients in Shahrekord. Southwest Iran AMB Express 11:147. https://doi.org/10.1186/s13568-021-01310-9 [DOI: 10.1186/s13568-021-01310-9]
  18. Liu Y, Wang S, Yang F et al (2022) Antimicrobial resistance patterns and genetic elements associated with the antibiotic resistance of Helicobacter pylori strains from Shanghai. Gut Pathogens 14:14. https://doi.org/10.1186/s13099-022-00488-y [DOI: 10.1186/s13099-022-00488-y]
  19. Igwaran A, Okoh AI (2019) Human campylobacteriosis: a public health concern of global importance. Heliyon 5:e02814. https://doi.org/10.1016/j.heliyon.2019.e02814 [DOI: 10.1016/j.heliyon.2019.e02814]
  20. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28:687–720. https://doi.org/10.1128/CMR.00006-15 [DOI: 10.1128/CMR.00006-15]
  21. Ferreira EO, Lagacé-Wiens P, Klein J (2022) Campylobacter concisus gastritis masquerading as Helicobacter pylori on gastric biopsy. Helicobacter 27:e12864. https://doi.org/10.1111/hel.12864 [DOI: 10.1111/hel.12864]
  22. Hlashwayo DF, Sigaúque B, Noormahomed EV et al (2021) A systematic review and meta-analysis reveal that Campylobacter spp. and antibiotic resistance are widespread in humans in sub-Saharan Africa. PLoS ONE 16:e0245951. https://doi.org/10.1371/journal.pone.0245951 [DOI: 10.1371/journal.pone.0245951]
  23. EFSA (2022) The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J 20:7209. https://doi.org/10.2903/j.efsa.2022.7209 [DOI: 10.2903/j.efsa.2022.7209]
  24. Wang D, Guo Q, Yuan Y, Gong Y (2019) The antibiotic resistance of Helicobacter pylori to five antibiotics and influencing factors in an area of China with a high risk of gastric cancer. BMC Microbiol 19:152. https://doi.org/10.1186/s12866-019-1517-4 [DOI: 10.1186/s12866-019-1517-4]
  25. Alcock BP, Raphenya AR, Lau TTY et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48:D517–D525. https://doi.org/10.1093/nar/gkz935 [DOI: 10.1093/nar/gkz935]
  26. Liu B, Zheng D, Jin Q et al (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47:D687–D692. https://doi.org/10.1093/nar/gky1080 [DOI: 10.1093/nar/gky1080]
  27. Feldgarden M, Brover V, Gonzalez-Escalona N et al (2021) AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 11:12728. https://doi.org/10.1038/s41598-021-91456-0 [DOI: 10.1038/s41598-021-91456-0]
  28. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447. https://doi.org/10.1093/nar/gkn656 [DOI: 10.1093/nar/gkn656]
  29. Doster E, Lakin SM, Dean CJ et al (2020) MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 48:D561–D569. https://doi.org/10.1093/nar/gkz1010 [DOI: 10.1093/nar/gkz1010]
  30. Bortolaia V, Kaas RS, Ruppe E et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–3500. https://doi.org/10.1093/jac/dkaa345 [DOI: 10.1093/jac/dkaa345]
  31. Hendriksen RS, Bortolaia V, Tate H et al (2019) Using genomics to track global antimicrobial resistance. Front Public Health 7:242. https://doi.org/10.3389/fpubh.2019.00242 [DOI: 10.3389/fpubh.2019.00242]
  32. Rao RSP, Ghate SD, Shastry RP et al (2023) Prevalence and heterogeneity of antibiotic resistance genes in Orientia tsutsugamushi and other rickettsial genomes. Microb Pathog 174:105953. https://doi.org/10.1016/j.micpath.2022.105953 [DOI: 10.1016/j.micpath.2022.105953]
  33. Zhang Z, Zhang Q, Wang T et al (2022) Assessment of global health risk of antibiotic resistance genes. Nat Commun 13:1553 [DOI: 10.1038/s41467-022-29283-8]
  34. Mootapally C, Mahajan MS, Nathani NM (2021) Sediment plasmidome of the Gulfs of Kathiawar Peninsula and Arabian Sea: insights gained from metagenomics data. Microb Ecol 81:540–548. https://doi.org/10.1007/s00248-020-01587-6 [DOI: 10.1007/s00248-020-01587-6]
  35. Tamura K, Stecher G, Kumar S (2021) MEGA 11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120 [DOI: 10.1093/molbev/msab120]
  36. Agresti A (2018) An introduction to categorical data analysis, 3rd edn. Wiley, New York
  37. Vijaymeena MK, Kavitha K (2016) A survey on similarity measures in text mining. Mach Learn Appl 3:19–28. https://doi.org/10.5121/mlaij.2016.3103 [DOI: 10.5121/mlaij.2016.3103]
  38. Karlsson R, Thorell K, Hosseini S et al (2016) Comparative analysis of two Helicobacter pylori strains using genomics and mass spectrometry-based proteomics. Front Microbiol 7:1757. https://doi.org/10.3389/fmicb.2016.01757 [DOI: 10.3389/fmicb.2016.01757]
  39. Kumar S, Schmitt C, Gorgette O et al (2022) Bacterial membrane vesicles as a novel strategy for extrusion of antimicrobial bismuth drug in Helicobacter pylori. MBio 13:e01633-e1722. https://doi.org/10.1128/mbio.01633-22 [DOI: 10.1128/mbio.01633-22]
  40. Loh JT, Shum MV, Jossart SD et al (2021) Delineation of the pH-responsive regulon controlled by the Helicobacter pylori ArsRS two-component system. Infect Immun 89:e00597-e620. https://doi.org/10.1128/IAI.00597-20 [DOI: 10.1128/IAI.00597-20]
  41. Müller SA, Findeiß S, Pernitzsch SR et al (2013) Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics. J Proteom 86:27–42. https://doi.org/10.1016/j.jprot.2013.04.036 [DOI: 10.1016/j.jprot.2013.04.036]
  42. Müller SA, Pernitzsch SR, Haange SB et al (2015) Stable isotope labeling by amino acids in cell culture based proteomics reveals differences in protein abundances between spiral and coccoid forms of the gastric pathogen Helicobacter pylori. J Proteom 126:34–45. https://doi.org/10.1016/j.jprot.2015.05.011 [DOI: 10.1016/j.jprot.2015.05.011]
  43. Sugiyama N, Miyake S, Lin MH et al (2019) Comparative proteomics of Helicobacter pylori strains reveals geographical features rather than genomic variations. Genes Cells 24:139–150. https://doi.org/10.1111/gtc.12662 [DOI: 10.1111/gtc.12662]
  44. Wei S, Li S, Wang J et al (2022) Outer membrane vesicles secreted by Helicobacter pylori transmitting gastric pathogenic virulence factors. ACS Omega 7:240–258. https://doi.org/10.1021/acsomega.1c04549 [DOI: 10.1021/acsomega.1c04549]
  45. Censini S, Lange C, Xiang Z et al (1996) Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93:14648–14653. https://doi.org/10.1073/pnas.93.25.14648 [DOI: 10.1073/pnas.93.25.14648]
  46. Collado L, Figueras MJ (2011) Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev 24:174–192. https://doi.org/10.1128/CMR.00034-10 [DOI: 10.1128/CMR.00034-10]
  47. Pérez-Cataluña A, Salas-Massó N, Diéguez AL et al (2018) Revisiting the taxonomy of the genus Arcobacter: getting order from the chaos. Front Microbiol 9:2077. https://doi.org/10.3389/fmicb.2018.02077 [DOI: 10.3389/fmicb.2018.02077]
  48. Larsson DGJ, Flach C-F (2022) Antibiotic resistance in the environment. Nat Rev Microbiol 20:257–269. https://doi.org/10.1038/s41579-021-00649-x [DOI: 10.1038/s41579-021-00649-x]
  49. Zhang Q, Zhang Z, Lu T et al (2020) Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Commun Biol 3:737. https://doi.org/10.1038/s42003-020-01468-1 [DOI: 10.1038/s42003-020-01468-1]
  50. Noto JM, Peek RM Jr (2012) The Helicobacter pylori cag pathogenicity island. Methods Mol Biol 921:41–50. https://doi.org/10.1007/978-1-62703-005-2_7 [DOI: 10.1007/978-1-62703-005-2_7]
  51. Hatakeyama M (2017) Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad B Phys Biol Sci 93:196–219. https://doi.org/10.2183/pjab.93.013 [DOI: 10.2183/pjab.93.013]
  52. Yu M, Xu M, Shen Y et al (2023) Hp0521 inhibited the virulence of H. pylori 26,695 strain via regulating CagA expression. Heliyon 9:e17881. https://doi.org/10.1016/j.heliyon.2023.e17881 [DOI: 10.1016/j.heliyon.2023.e17881]
  53. Yuan X-y, Yan J-J, Yang Y-c et al (2017) Helicobacter pylori with East Asian-type cagPAI genes is more virulent than strains with Western-type in some cagPAI genes. Braz J Microbiol 48:218–224. https://doi.org/10.1016/j.bjm.2016.12.004 [DOI: 10.1016/j.bjm.2016.12.004]
  54. Geisinger E, Isberg RR (2017) Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis 215:S9–S17. https://doi.org/10.1093/infdis/jiw402 [DOI: 10.1093/infdis/jiw402]
  55. Abdi SN, Ghotaslou R, Ganbarov K et al (2020) Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect Drug Resist 13:423–434. https://doi.org/10.2147/IDR.S228089 [DOI: 10.2147/IDR.S228089]
  56. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923 [DOI: 10.1146/annurev.biochem.78.082907.145923]
  57. Salini S, Muralikrishnan B, Bhat SG et al (2022) Overexpression of a membrane transport system MSMEG_1381 and MSMEG_1382 confers multidrug resistance in Mycobacterium smegmatis. Preprints 202204.0003.v2. https://doi.org/10.20944/preprints202204.0003.v2 .
  58. van Hoek AHAM, Mevius D, Guerra B et al (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203. https://doi.org/10.3389/fmicb.2011.00203 [DOI: 10.3389/fmicb.2011.00203]
  59. Kent AG, Vill AC, Shi Q et al (2020) Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi–C. Nat Commun 11:4379. https://doi.org/10.1038/s41467-020-18164-7 [DOI: 10.1038/s41467-020-18164-7]
  60. Oyarzabal OA, Rad R, Backert S (2007) Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to Campylobacter jejuni. J Clin Microbiol 45:402–408. https://doi.org/10.1128/JCM.01456-06 [DOI: 10.1128/JCM.01456-06]
  61. Stingl K, Müller S, Scheidgen-Kleyboldt G et al (2010) Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc Natl Acad Sci USA 107:1184–1189. https://doi.org/10.1073/pnas.0909955107 [DOI: 10.1073/pnas.0909955107]
  62. Her H-L, Lin P-T, Wu Y-W (2021) PangenomeNet: A pan-genome-based network reveals functional modules on antimicrobial resistome for Escherichia coli strains. BMC Bioinformatics 22:548. https://doi.org/10.1186/s12859-021-04459-z [DOI: 10.1186/s12859-021-04459-z]

MeSH Term

Helicobacter pylori
Drug Resistance, Bacterial
Anti-Bacterial Agents
Virulence
Virulence Factors
Bacterial Proteins
Genome, Bacterial
Helicobacter Infections
Humans

Chemicals

Anti-Bacterial Agents
Virulence Factors
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0genespyloriantibioticresistanceHvirulencecampylobacteriaHelicobacterVirulencerelationamongJustmembersuniquecagsshowedmembercladeleadingcausechronicgastritisgastriccancergreatconcernpublichealthHoweverrelationshipremainsunclearUsingcomprehensivedatabasesexploredavailable354completegenomescompared90speciesgenes/proteinsaverage129highestspp71onelowest26%sharedcampylobacterialwhereas94%cytotoxin-associatedseemedexclusiveMajorityisolatesAsiaSouthAmericacag2-negativemanyisolate-specificpatternsoccurrence1588%10366%including25proteomicallyidentifiedArcobacteriallargevariationnumberpositivegenomesizeLargerepositorysetmightimportantimplicationsshapingcourseExtentAntibioticResistanceGenesCampylobacteria

Similar Articles

Cited By