Discovery and biosynthesis of bacterial drimane-type sesquiterpenoids from .

Dongxu Zhang, Wenyu Du, Xingming Pan, Xiaoxu Lin, Fang-Ru Li, Qingling Wang, Qian Yang, Hui-Min Xu, Liao-Bin Dong
Author Information
  1. Dongxu Zhang: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
  2. Wenyu Du: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
  3. Xingming Pan: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
  4. Xiaoxu Lin: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
  5. Fang-Ru Li: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
  6. Qingling Wang: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
  7. Qian Yang: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
  8. Hui-Min Xu: The Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China.
  9. Liao-Bin Dong: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. ORCID

Abstract

Drimane-type sesquiterpenoids (DMTs) are characterized by a distinctive 6/6 bicyclic skeleton comprising the A and B rings. While DMTs are commonly found in fungi and plants, their presence in bacteria has not been reported. Moreover, the biosynthetic pathways for DMTs have been primarily elucidated in fungi, with identified P450s only acting on the B ring. In this study, we isolated and characterized three bacterial DMTs, namely 3β-hydroxydrimenol (), 2α-hydroxydrimenol (), and 3-ketodrimenol (), from . Through genome mining and heterologous expression, we identified a biosynthetic gene cluster responsible for the biosynthesis of DMTs -, along with a P450, CavA, responsible for introducing the C-2 and C-3 hydroxy groups. Furthermore, the substrate scope of CavA revealed its ability to hydroxylate drimenol analogs. This discovery not only broadens the known chemical diversity of DMTs from bacteria, but also provides new insights into DMT biosynthesis in bacteria.

Keywords

References

  1. Nat Prod Rep. 2024 Mar 20;41(3):402-433 [PMID: 38105714]
  2. Nat Chem. 2020 Feb;12(2):173-179 [PMID: 31959962]
  3. Nat Prod Rep. 2011 Jun;28(6):1054-86 [PMID: 21547300]
  4. Chem Rev. 2017 Apr 26;117(8):5675-5703 [PMID: 27995802]
  5. Chembiochem. 2018 May 27;: [PMID: 29806086]
  6. Genome Biol Evol. 2010 Jul 12;2:212-24 [PMID: 20624727]
  7. FEBS Lett. 2014 Dec 20;588(24):4597-603 [PMID: 25447532]
  8. Eur J Pharmacol. 1998 Aug 28;356(1):81-9 [PMID: 9761427]
  9. ACS Chem Biol. 2022 May 20;17(5):1226-1238 [PMID: 35446557]
  10. Org Lett. 2012 Jul 6;14(13):3438-41 [PMID: 22702354]
  11. Angew Chem Int Ed Engl. 2023 Dec 21;62(52):e202315659 [PMID: 37962519]
  12. Chin J Nat Med. 2023 Jan;21(1):58-64 [PMID: 36641233]
  13. Plant J. 2017 Jun;90(6):1052-1063 [PMID: 28258968]
  14. J Am Chem Soc. 2016 Jun 1;138(21):6746-53 [PMID: 27213615]
  15. Chembiochem. 2022 Sep 5;23(17):e202200173 [PMID: 35574818]
  16. ACS Chem Biol. 2016 Oct 21;11(10):2673-2678 [PMID: 27560135]
  17. Beilstein J Org Chem. 2022 Jul 21;18:881-888 [PMID: 35957755]
  18. Chem Pharm Bull (Tokyo). 2009 Apr;57(4):433-5 [PMID: 19336945]
  19. Nat Commun. 2018 Oct 5;9(1):4091 [PMID: 30291234]
  20. Antimicrob Agents Chemother. 1982 Jan;21(1):74-84 [PMID: 6282210]
  21. ACS Synth Biol. 2019 Jan 18;8(1):109-118 [PMID: 30575381]
  22. Angew Chem Int Ed Engl. 2021 Oct 25;60(44):23763-23770 [PMID: 34468074]
  23. Food Chem Toxicol. 2020 Dec;146:111775 [PMID: 32987110]
  24. J Nat Prod. 2012 Oct 26;75(10):1744-9 [PMID: 23006147]
  25. Nat Prod Rep. 2021 May 26;38(5):905-980 [PMID: 33169126]
  26. J Org Chem. 2021 Nov 5;86(21):14563-14571 [PMID: 34662127]
  27. Nat Commun. 2023 Mar 25;14(1):1669 [PMID: 36966128]
  28. J Nat Prod. 2014 Jan 24;77(1):138-47 [PMID: 24387683]
  29. J Nat Prod. 2012 Feb 24;75(2):262-6 [PMID: 22276851]
  30. Nat Prod Rep. 2011 Aug;28(8):1359-80 [PMID: 21670801]
  31. Antimicrob Agents Chemother. 1977 May;11(5):852-7 [PMID: 879738]
  32. Gene. 1988;62(2):187-96 [PMID: 3130293]
  33. J Mol Biol. 2023 Jul 15;435(14):168018 [PMID: 37356897]
  34. Angew Chem Int Ed Engl. 2023 Nov 6;62(45):e202312490 [PMID: 37735947]
  35. Angew Chem Int Ed Engl. 2023 Feb 20;62(9):e202215566 [PMID: 36583947]
  36. Chembiochem. 2023 Nov 16;24(22):e202300518 [PMID: 37605310]
  37. Commun Chem. 2023 Apr 24;6(1):79 [PMID: 37095327]
  38. Chin J Nat Med. 2022 Oct;20(10):737-748 [PMID: 36307196]
  39. Sci Rep. 2016 Sep 15;6:32865 [PMID: 27628599]
  40. Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202213053 [PMID: 36314667]
  41. J Am Chem Soc. 2022 Dec 7;144(48):22067-22074 [PMID: 36416740]

Word Cloud

Created with Highcharts 10.0.0DMTsbiosynthesisbacteriabacterialsesquiterpenoidscharacterizedBfungibiosyntheticidentifiedP450sresponsibleCavAdrimane-typeterpenoidDrimane-typedistinctive6/6bicyclicskeletoncomprisingringscommonlyfoundplantspresencereportedMoreoverpathwaysprimarilyelucidatedactingringstudyisolatedthreenamely3β-hydroxydrimenol2α-hydroxydrimenol3-ketodrimenolgenomeminingheterologousexpressiongenecluster-alongP450introducingC-2C-3hydroxygroupsFurthermoresubstratescoperevealedabilityhydroxylatedrimenolanalogsdiscoverybroadensknownchemicaldiversityalsoprovidesnewinsightsDMTDiscoveryStreptomycesclavuligeruscytochromesesquiterpenoid

Similar Articles

Cited By