Structural insights into the molecular mechanism of phytoplasma immunodominant membrane protein.

Chang Yi Liu, Han Pin Cheng, Chan Pin Lin, Yi Ting Liao, Tzu Ping Ko, Shin Jen Lin, Shih Shun Lin, Hao Ching Wang
Author Information
  1. Chang Yi Liu: The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan. ORCID
  2. Han Pin Cheng: Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
  3. Chan Pin Lin: Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
  4. Yi Ting Liao: Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. ORCID
  5. Tzu Ping Ko: Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. ORCID
  6. Shin Jen Lin: International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
  7. Shih Shun Lin: Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
  8. Hao Ching Wang: The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan. ORCID

Abstract

Immunodominant membrane protein (IMP) is a prevalent membrane protein in phytoplasma and has been confirmed to be an F-actin-binding protein. However, the intricate molecular mechanisms that govern the function of IMP require further elucidation. In this study, the X-ray crystallographic structure of IMP was determined and insights into its interaction with plant actin are provided. A comparative analysis with other proteins demonstrates that IMP shares structural homology with talin rod domain-containing protein 1 (TLNRD1), which also functions as an F-actin-binding protein. Subsequent molecular-docking studies of IMP and F-actin reveal that they possess complementary surfaces, suggesting a stable interaction. The low potential energy and high confidence score of the IMP-F-actin binding model indicate stable binding. Additionally, by employing immunoprecipitation and mass spectrometry, it was discovered that IMP serves as an interaction partner for the phytoplasmal effector causing phyllody 1 (PHYL1). It was then shown that both IMP and PHYL1 are highly expressed in the S2 stage of peanut witches' broom phytoplasma-infected Catharanthus roseus. The association between IMP and PHYL1 is substantiated through in vivo immunoprecipitation, an in vitro cross-linking assay and molecular-docking analysis. Collectively, these findings expand the current understanding of IMP interactions and enhance the comprehension of the interaction of IMP with plant F-actin. They also unveil a novel interaction pathway that may influence phytoplasma pathogenicity and host plant responses related to PHYL1. This discovery could pave the way for the development of new strategies to overcome phytoplasma-related plant diseases.

Keywords

References

  1. Int J Mol Sci. 2023 Jan 04;24(2): [PMID: 36674483]
  2. Microbiology (Reading). 1998 May;144 ( Pt 5):1257-1262 [PMID: 9611800]
  3. Plant J. 2014 May;78(4):541-54 [PMID: 24597566]
  4. Intrinsically Disord Proteins. 2013 Apr 1;1(1):e25464 [PMID: 28516014]
  5. Plant Signal Behav. 2015;10(12):e1107690 [PMID: 26492318]
  6. Methods Enzymol. 1997;276:307-26 [PMID: 27754618]
  7. Plant J. 2019 Nov;100(4):706-719 [PMID: 31323156]
  8. Microbiology (Reading). 2016 Aug;162(8):1267-1273 [PMID: 27384683]
  9. Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17377-82 [PMID: 19805138]
  10. Mol Plant Pathol. 2008 Jul;9(4):403-23 [PMID: 18705857]
  11. Nucleic Acids Res. 2022 Jul 5;50(W1):W210-W215 [PMID: 35610055]
  12. Proteomics. 2009 Dec;9(23):5328-39 [PMID: 19834890]
  13. FEMS Microbiol Lett. 2009 Apr;293(1):92-101 [PMID: 19222574]
  14. Nat Protoc. 2020 May;15(5):1829-1852 [PMID: 32269383]
  15. Plant Cell Physiol. 2013 Jul;54(7):1217-27 [PMID: 23677921]
  16. Plant Cell Physiol. 2014 May;55(5):942-57 [PMID: 24492256]
  17. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  18. Planta. 2014 Apr;239(4):909-19 [PMID: 24407512]
  19. Phytopathology. 2010 Apr;100(4):300-12 [PMID: 20205533]
  20. Front Microbiol. 2013 Aug 14;4:230 [PMID: 23966988]
  21. BMC Bioinformatics. 2006 Jul 12;7:339 [PMID: 16836757]
  22. Gene. 2012 Dec 1;510(2):107-12 [PMID: 22982017]
  23. Phytopathology. 2010 Sep;100(9):863-70 [PMID: 20701483]
  24. PLoS Biol. 2014 Apr 08;12(4):e1001835 [PMID: 24714165]
  25. Mol Plant Microbe Interact. 2012 Jul;25(7):889-95 [PMID: 22432876]
  26. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95(7):401-418 [PMID: 31406061]
  27. Plant Signal Behav. 2015;10(8):e1042635 [PMID: 26179462]
  28. Int J Mol Sci. 2023 Feb 24;24(5): [PMID: 36901925]
  29. Annu Rev Microbiol. 2000;54:221-55 [PMID: 11018129]
  30. Plant Physiol. 2015 Aug;168(4):1702-16 [PMID: 26103992]
  31. Plant Cell. 2006 Oct;18(10):2807-21 [PMID: 17041146]
  32. J Cell Biol. 2021 Sep 6;220(9): [PMID: 34264272]

Grants

  1. MOST110-2628-B-038-010/Ministry of Science and Technology, Taiwan
  2. MOST111-2628-B-038-010/Ministry of Science and Technology, Taiwan
  3. NSTC 112-2628-B-038-011/Ministry of Science and Technology, Taiwan

MeSH Term

Phytoplasma
Crystallography, X-Ray
Membrane Proteins
Bacterial Proteins
Actins
Plant Diseases
Catharanthus
Molecular Docking Simulation
Protein Binding

Chemicals

Membrane Proteins
Bacterial Proteins
Actins

Word Cloud

Created with Highcharts 10.0.0IMPproteininteractionmembraneplantPHYL1proteinsphytoplasmaF-actin-bindingmolecularX-raystructureinsightsanalysis1alsomolecular-dockingF-actinstablebindingimmunoprecipitationimmunodominantImmunodominantprevalentin phytoplasmaconfirmedHoweverintricatemechanismsgovernfunctionrequireelucidationstudycrystallographicof IMPdeterminedactinprovidedcomparativedemonstratessharesstructuralhomologytalinroddomain-containingTLNRD1functionsSubsequentstudiesrevealpossesscomplementarysurfacessuggestinglowpotentialenergyhighconfidencescoreIMP-F-actinmodelindicateAdditionallyemployingmassspectrometrydiscoveredservespartnerphytoplasmaleffectorcausingphyllodyshownhighlyexpressedS2stagepeanutwitches'broomphytoplasma-infectedCatharanthusroseusassociationsubstantiatedvivovitrocross-linkingassayCollectivelyfindingsexpandcurrentunderstandinginteractionsenhancecomprehensionunveilnovelpathwaymayinfluencepathogenicityhostresponsesrelateddiscoverypavewaydevelopmentnewstrategiesovercomephytoplasma-relateddiseasesStructuralmechanismcrystallographyactin-binding��-helixbundles

Similar Articles

Cited By