Single-cell analysis revealing the metabolic landscape of prostate cancer.

Jing Wang, He-Kang Ding, Han-Jiang Xu, De-Kai Hu, William Hankey, Li Chen, Jun Xiao, Chao-Zhao Liang, Bing Zhao, Ling-Fan Xu
Author Information
  1. Jing Wang: Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China.
  2. He-Kang Ding: Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China.
  3. Han-Jiang Xu: Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China.
  4. De-Kai Hu: Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China.
  5. William Hankey: Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
  6. Li Chen: Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
  7. Jun Xiao: Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
  8. Chao-Zhao Liang: Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China.
  9. Bing Zhao: Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
  10. Ling-Fan Xu: Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China.

Abstract

ABSTRACT: Tumor metabolic reprogramming is a hallmark of cancer development, and targeting metabolic vulnerabilities has been proven to be an effective approach for castration-resistant prostate cancer (CRPC) treatment. Nevertheless, treatment failure inevitably occurs, largely due to cellular heterogeneity, which cannot be deciphered by traditional bulk sequencing techniques. By employing computational pipelines for single-cell RNA sequencing, we demonstrated that epithelial cells within the prostate are more metabolically active and plastic than stromal cells. Moreover, we identified that neuroendocrine (NE) cells tend to have high metabolic rates, which might explain the high demand for nutrients and energy exhibited by neuroendocrine prostate cancer (NEPC), one of the most lethal variants of prostate cancer (PCa). Additionally, we demonstrated through computational and experimental approaches that variation in mitochondrial activity is the greatest contributor to metabolic heterogeneity among both tumor cells and nontumor cells. These results establish a detailed metabolic landscape of PCa, highlight a potential mechanism of disease progression, and emphasize the importance of future studies on tumor heterogeneity and the tumor microenvironment from a metabolic perspective.

References

  1. Nat Cell Biol. 2021 Jan;23(1):87-98 [PMID: 33420488]
  2. Cell. 2018 Jul 26;174(3):758-769.e9 [PMID: 30033370]
  3. Oncogene. 2022 Feb;41(8):1140-1154 [PMID: 35046532]
  4. Clin Cancer Res. 2019 Dec 1;25(23):6916-6924 [PMID: 31363002]
  5. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  6. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  7. Nat Rev Urol. 2020 Apr;17(4):214-231 [PMID: 32112053]
  8. iScience. 2022 Jun 13;25(7):104576 [PMID: 35789834]
  9. Anal Chem. 2019 Nov 5;91(21):13314-13323 [PMID: 31549807]
  10. Front Endocrinol (Lausanne). 2022 Jul 14;13:926585 [PMID: 35909568]
  11. Signal Transduct Target Ther. 2020 Oct 7;5(1):227 [PMID: 33028824]
  12. J Exp Clin Cancer Res. 2018 Sep 10;37(1):221 [PMID: 30200999]
  13. Cell Metab. 2018 Nov 6;28(5):669-670 [PMID: 30403984]
  14. Eur Urol. 2022 May;81(5):446-455 [PMID: 35058087]
  15. Int J Oral Sci. 2021 Nov 15;13(1):36 [PMID: 34782601]
  16. Science. 2017 Jan 6;355(6320):78-83 [PMID: 28059767]
  17. Cancer Cell. 2010 Jul 13;18(1):11-22 [PMID: 20579941]
  18. Cancer Cell. 2023 Jul 10;41(7):1345-1362.e9 [PMID: 37352863]
  19. Nat Rev Drug Discov. 2022 Feb;21(2):141-162 [PMID: 34862480]
  20. Nat Commun. 2021 Jan 29;12(1):681 [PMID: 33514719]
  21. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  22. Annu Rev Biomed Eng. 2017 Jun 21;19:163-194 [PMID: 28301735]
  23. Cells. 2021 Feb 02;10(2): [PMID: 33540679]
  24. Science. 2020 Apr 10;368(6487): [PMID: 32273439]
  25. Mol Cancer. 2022 Jun 18;21(1):132 [PMID: 35717322]
  26. Mol Cancer. 2019 Mar 30;18(1):70 [PMID: 30927908]
  27. Front Oncol. 2022 Jan 10;11:814085 [PMID: 35083160]
  28. Oncogene. 2021 Dec;40(50):6748-6758 [PMID: 34663877]
  29. Sci Transl Med. 2019 Dec 4;11(521): [PMID: 31801883]
  30. Mol Biol Rep. 2019 Feb;46(1):1393-1400 [PMID: 30460535]
  31. J Oncol. 2019 Aug 1;2019:8361945 [PMID: 31467544]
  32. Cell. 2020 Sep 3;182(5):1232-1251.e22 [PMID: 32822576]
  33. Nature. 2020 Apr;580(7801):93-99 [PMID: 32238934]
  34. Nat Commun. 2018 Jun 19;9(1):2404 [PMID: 29921838]
  35. Cell Metab. 2019 Mar 5;29(3):576-591 [PMID: 30773467]
  36. Endocr Relat Cancer. 2021 Jul 15;28(8):T67-T78 [PMID: 34111024]
  37. Proc Natl Acad Sci U S A. 2021 Mar 30;118(13): [PMID: 33753479]
  38. Science. 2017 Jan 6;355(6320):84-88 [PMID: 28059768]
  39. Nat Commun. 2020 Jan 17;11(1):338 [PMID: 31953400]
  40. Cancer Discov. 2011 Nov;1(6):487-95 [PMID: 22389870]
  41. J Clin Invest. 2018 Oct 1;128(10):4472-4484 [PMID: 30047926]
  42. Cell Rep. 2020 Jun 2;31(9):107701 [PMID: 32492417]
  43. Front Immunol. 2018 Feb 23;9:353 [PMID: 29527212]
  44. Nat Med. 2016 Mar;22(3):298-305 [PMID: 26855148]
  45. Curr Oncol Rep. 2021 Jan 12;23(2):15 [PMID: 33433737]
  46. Nat Commun. 2020 Mar 17;11(1):1320 [PMID: 32184390]
  47. Cell Commun Signal. 2020 Apr 7;18(1):59 [PMID: 32264958]
  48. Front Oncol. 2019 Nov 26;9:1263 [PMID: 31850193]
  49. Endocr Relat Cancer. 2019 Jan 1;26(1):59-71 [PMID: 30400006]
  50. Oncoimmunology. 2020 Feb 9;9(1):1726556 [PMID: 32117592]
  51. Nat Commun. 2019 Aug 21;10(1):3763 [PMID: 31434891]
  52. Science. 2018 Oct 5;362(6410):91-95 [PMID: 30287662]
  53. Cell. 2017 Dec 14;171(7):1611-1624.e24 [PMID: 29198524]
  54. Oncogene. 2019 Jul;38(27):5339-5355 [PMID: 30936458]
  55. Cell Rep. 2018 Dec 18;25(12):3530-3542.e5 [PMID: 30566875]
  56. Commun Biol. 2020 Dec 16;3(1):778 [PMID: 33328604]
  57. Mol Cancer. 2019 Jan 18;18(1):11 [PMID: 30657058]
  58. Nature. 2019 Apr;568(7751):235-239 [PMID: 30911168]
  59. Cell Metab. 2016 Nov 8;24(5):685-700 [PMID: 27829138]
  60. Cancer Cell. 2022 Nov 14;40(11):1306-1323.e8 [PMID: 36332622]
  61. Cancers (Basel). 2020 Jul 13;12(7): [PMID: 32668821]

MeSH Term

Male
Humans
Single-Cell Analysis
Prostatic Neoplasms
Tumor Microenvironment
Mitochondria
Prostate
Prostatic Neoplasms, Castration-Resistant
Epithelial Cells

Word Cloud

Created with Highcharts 10.0.0metaboliccancerprostatecellsheterogeneitytumortreatmentsequencingcomputationaldemonstratedneuroendocrinehighPCalandscapeABSTRACT:Tumorreprogramminghallmarkdevelopmenttargetingvulnerabilitiesproveneffectiveapproachcastration-resistantCRPCNeverthelessfailureinevitablyoccurslargelyduecellulardecipheredtraditionalbulktechniquesemployingpipelinessingle-cellRNAepithelialwithinmetabolicallyactiveplasticstromalMoreoveridentifiedNEtendratesmightexplaindemandnutrientsenergyexhibitedNEPConelethalvariantsAdditionallyexperimentalapproachesvariationmitochondrialactivitygreatestcontributoramongnontumorresultsestablishdetailedhighlightpotentialmechanismdiseaseprogressionemphasizeimportancefuturestudiesmicroenvironmentperspectiveSingle-cellanalysisrevealing

Similar Articles

Cited By