Loss of Midbrain Dopamine Neurons Does Not Alter GABAergic Inhibition Mediated by Parvalbumin-Expressing Interneurons in Mouse Primary Motor Cortex.

Suraj Cherian, Gabriel Simms, Liqiang Chen, Hong-Yuan Chu
Author Information
  1. Suraj Cherian: Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503. ORCID
  2. Gabriel Simms: Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503.
  3. Liqiang Chen: Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503.
  4. Hong-Yuan Chu: Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503 hongyuan.chu@gmail.com. ORCID

Abstract

The primary motor cortex (M1) integrates sensory and cognitive inputs to generate voluntary movement. Its functional impairments have been implicated in the pathophysiology of motor symptoms in Parkinson's disease (PD). Specifically, dopaminergic degeneration and basal ganglia dysfunction entrain M1 neurons into the abnormally synchronized bursting pattern of activity throughout the cortico-basal ganglia-thalamocortical network. However, how degeneration of the midbrain dopaminergic neurons affects the anatomy, microcircuit connectivity, and function of the M1 network remains poorly understood. The present study examined whether and how the loss of dopamine (DA) affects the morphology, cellular excitability, and synaptic physiology of Layer 5 parvalbumin-expressing (PV) cells in the M1 of mice of both sexes. Here, we reported that loss of midbrain dopaminergic neurons does not alter the number, morphology, and physiology of Layer 5 PV cells in M1. Moreover, we demonstrated that the number of perisomatic PV puncta of M1 pyramidal neurons as well as their functional innervation of cortical pyramidal neurons were not altered following the loss of DA. Together, the present study documents an intact GABAergic inhibitory network formed by PV cells following the loss of midbrain dopaminergic neurons.

Keywords

References

  1. Clin Neurophysiol. 2008 Jul;119(7):1459-74 [PMID: 18467168]
  2. Neuron. 2015 Jan 21;85(2):364-76 [PMID: 25578364]
  3. Dev Neurobiol. 2011 Jan 1;71(1):45-61 [PMID: 21154909]
  4. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  5. Cereb Cortex. 1998 Jun;8(4):321-45 [PMID: 9651129]
  6. eNeuro. 2020 May 20;7(3): [PMID: 32321772]
  7. Neuron. 2012 Dec 6;76(5):1030-41 [PMID: 23217750]
  8. Brain Res. 2013 Sep 19;1531:37-47 [PMID: 23891794]
  9. Trends Neurosci. 1989 Oct;12(10):366-75 [PMID: 2479133]
  10. Neurobiol Dis. 2022 Jun 1;167:105674 [PMID: 35245676]
  11. Cereb Cortex. 2011 Jun;21(6):1362-78 [PMID: 21045003]
  12. Nat Neurosci. 2015 Sep;18(9):1299-1309 [PMID: 26237365]
  13. Front Neural Circuits. 2016 May 06;10:35 [PMID: 27199675]
  14. Trends Neurosci. 1999 Feb;22(2):51-61 [PMID: 10092043]
  15. Trends Neurosci. 1990 Jul;13(7):281-5 [PMID: 1695404]
  16. J Neurosci. 2021 Jun 23;41(25):5553-5565 [PMID: 34006589]
  17. J Neurosci. 2023 Aug 23;43(34):6021-6034 [PMID: 37527923]
  18. Exp Neurol. 2010 Nov;226(1):207-17 [PMID: 20832408]
  19. Nat Commun. 2020 May 13;11(1):2388 [PMID: 32404907]
  20. Nat Neurosci. 2017 Jun;20(6):815-823 [PMID: 28481350]
  21. Cereb Cortex. 2018 Apr 1;28(4):1154-1167 [PMID: 28174907]
  22. eNeuro. 2021 Oct 18;8(5): [PMID: 34556558]
  23. Neuron. 2019 Mar 20;101(6):1042-1056 [PMID: 30897356]
  24. J Neurosci. 2002 Jun 1;22(11):4639-53 [PMID: 12040070]
  25. Front Neurol. 2019 Dec 20;10:1298 [PMID: 31920922]
  26. Front Cell Neurosci. 2018 Mar 06;12:53 [PMID: 29559891]
  27. Front Neural Circuits. 2011 Sep 29;5:12 [PMID: 21994491]
  28. J Neurosci. 2011 Sep 14;31(37):13260-71 [PMID: 21917809]
  29. J Neurosci. 2011 Feb 16;31(7):2481-7 [PMID: 21325515]
  30. J Neurosci. 2012 Jun 6;32(23):7869-80 [PMID: 22674263]
  31. Mov Disord. 2021 Jul;36(7):1565-1577 [PMID: 33606292]
  32. J Neurosci. 2022 Oct 26;42(43):8095-8112 [PMID: 36104281]
  33. J Neurosci. 2005 Sep 14;25(37):8505-17 [PMID: 16162932]
  34. J Neurosci. 2021 Dec 15;41(50):10382-10404 [PMID: 34753740]
  35. Cell Rep. 2017 Jul 11;20(2):308-318 [PMID: 28700934]
  36. Sci Adv. 2023 Aug 25;9(34):eadg3038 [PMID: 37611096]
  37. Nat Neurosci. 2011 Dec 04;15(1):20-2 [PMID: 22138646]
  38. Neuron. 2016 Jul 20;91(2):260-92 [PMID: 27477017]

Grants

  1. R01 NS121371/NINDS NIH HHS

MeSH Term

Animals
Female
Male
Mice
Dopaminergic Neurons
GABAergic Neurons
Interneurons
Mesencephalon
Mice, Inbred C57BL
Mice, Transgenic
Motor Cortex
Neural Inhibition
Parvalbumins

Chemicals

Parvalbumins

Word Cloud

Created with Highcharts 10.0.0M1neuronsdopaminergiclossPVmotornetworkmidbraincellscortexfunctionalParkinson'sdiseasedegenerationaffectspresentstudydopamineDAmorphologyphysiologyLayer5numberpyramidalfollowingGABAergicprimaryintegratessensorycognitiveinputsgeneratevoluntarymovementimpairmentsimplicatedpathophysiologysymptomsPDSpecificallybasalgangliadysfunctionentrainabnormallysynchronizedburstingpatternactivitythroughoutcortico-basalganglia-thalamocorticalHoweveranatomymicrocircuitconnectivityfunctionremainspoorlyunderstoodexaminedwhethercellularexcitabilitysynapticparvalbumin-expressingmicesexesreportedalterMoreoverdemonstratedperisomaticpunctawellinnervationcorticalalteredTogetherdocumentsintactinhibitoryformedLossMidbrainDopamineNeuronsAlterInhibitionMediatedParvalbumin-ExpressingInterneuronsMousePrimaryMotorCortex6-OHDAoptogeneticsparvalbumin

Similar Articles

Cited By