Bactericidal and biofilm eradication efficacy of a fluorinated benzimidazole derivative, TFBZ, against methicillin-resistant .

Qian Chen, Zhihui Dong, Xuedi Yao, Huan Sun, Xin Pan, Jikai Liu, Rong Huang
Author Information
  1. Qian Chen: The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
  2. Zhihui Dong: The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
  3. Xuedi Yao: The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
  4. Huan Sun: The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
  5. Xin Pan: International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
  6. Jikai Liu: The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
  7. Rong Huang: The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.

Abstract

Methicillin-resistant (MRSA) is a major inducement of nosocomial infections and its biofilm formation render the high tolerance to conventional antibiotics, which highlights the requirement to develop new antimicrobial agents urgently. In this study, we identified a fluorinated benzimidazole derivative, TFBZ, with potent antibacterial efficacy toward planktonic MRSA (MIC = 4 μg/mL, MBC = 8 μg/mL) and its persistent biofilms (≥99%, MBEC = 8 μg/mL). TFBZ manifested significant irreversible time-dependent killing against MRSA as characterized by diminished cell viability, bacterial morphological change and protein leakage. Furthermore, the results from CBD devices, crystal violet assay in conjunction with live/dead staining and scanning electron microscopy confirmed that TFBZ was capable of eradicating preformed MRSA biofilms with high efficiency. Simultaneously, TFBZ reduced the bacterial invasiveness and exerted negligible hemolysis and cytotoxicity toward mammalian cells, which ensuring the robust therapeutic effect on mouse skin abscess model. The transcriptome profiling and quantitative RT-PCR revealed that a set of encoding genes associated with cell adhesion, biofilm formation, translation process, cell wall biosynthesis was consistently downregulated in MRSA biofilms upon exposure to TFBZ. In conclusion, TFBZ holds promise as a valuable candidate for therapeutic applications against MRSA chronic infections.

Keywords

References

  1. Bioorg Chem. 2021 Oct;115:105175 [PMID: 34298242]
  2. Int J Nanomedicine. 2023 Sep 21;18:5441-5455 [PMID: 37753066]
  3. Sci Adv. 2023 Jul 14;9(28):eadg9116 [PMID: 37450586]
  4. J Med Chem. 2016 Apr 28;59(8):3808-25 [PMID: 27018907]
  5. ACS Nano. 2017 Sep 26;11(9):9330-9339 [PMID: 28806528]
  6. J Bacteriol. 1998 Mar;180(6):1466-72 [PMID: 9515915]
  7. Front Microbiol. 2023 Jun 22;14:1204428 [PMID: 37434702]
  8. ACS Appl Mater Interfaces. 2022 Jan 12;14(1):159-171 [PMID: 34929082]
  9. Pharmacol Res. 2020 Oct;160:105067 [PMID: 32650057]
  10. J Biol Chem. 2018 Nov 16;293(46):17985-17996 [PMID: 30237166]
  11. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  12. Angew Chem Int Ed Engl. 2018 Jul 26;57(31):9645-9649 [PMID: 29534322]
  13. Front Pharmacol. 2023 May 11;14:1144561 [PMID: 37251338]
  14. Front Microbiol. 2019 Sep 04;10:2027 [PMID: 31551964]
  15. Sci Rep. 2016 Feb 03;6:20307 [PMID: 26839286]
  16. Nucleic Acids Res. 2023 Jan 6;51(D1):D587-D592 [PMID: 36300620]
  17. Chin Med. 2019 Mar 20;14:11 [PMID: 30936939]
  18. Acta Biomater. 2022 Dec;154:359-373 [PMID: 36191775]
  19. J Agric Food Chem. 2020 Jul 8;68(27):7121-7131 [PMID: 32588628]
  20. J Control Release. 2023 Oct;362:565-576 [PMID: 37673305]
  21. Front Pharmacol. 2022 Jan 28;13:825489 [PMID: 35153795]
  22. Nat Rev Microbiol. 2014 Jan;12(1):49-62 [PMID: 24336184]
  23. EMBO J. 2010 Aug 4;29(15):2577-85 [PMID: 20588254]
  24. J Ethnopharmacol. 2021 Oct 28;279:114383 [PMID: 34214645]
  25. J Microbiol Methods. 2023 Nov;214:106830 [PMID: 37805093]
  26. Front Cell Infect Microbiol. 2022 Sep 21;12:1003033 [PMID: 36211965]
  27. Appl Microbiol Biotechnol. 2020 Sep;104(18):7957-7970 [PMID: 32803295]
  28. Diseases. 2023 Nov 05;11(4): [PMID: 37987271]
  29. ACS Appl Mater Interfaces. 2020 May 13;12(19):21231-21241 [PMID: 31934739]
  30. J Am Chem Soc. 2018 Nov 28;140(47):16140-16151 [PMID: 30388366]
  31. Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12048-53 [PMID: 21730129]
  32. Nanoscale. 2020 Apr 14;12(14):7651-7659 [PMID: 32207761]
  33. J Med Chem. 2021 Nov 25;64(22):16854-16863 [PMID: 34784220]
  34. Front Pharmacol. 2023 Nov 06;14:1295623 [PMID: 38026960]
  35. J Agric Food Chem. 2019 Nov 6;67(44):12322-12332 [PMID: 31638792]
  36. Front Pharmacol. 2021 Sep 16;12:720685 [PMID: 34603031]
  37. J Clin Microbiol. 2021 Nov 18;59(12):e0021321 [PMID: 34550809]
  38. Acta Biomater. 2020 Nov;117:400-417 [PMID: 33007485]
  39. Sci Rep. 2018 Feb 9;8(1):2758 [PMID: 29426873]
  40. Int J Mol Sci. 2022 Sep 14;23(18): [PMID: 36142597]
  41. ACS Appl Mater Interfaces. 2022 Mar 2;14(8):10200-10211 [PMID: 35179370]
  42. Biofouling. 2019 Feb;35(2):129-142 [PMID: 30950296]
  43. Nano Lett. 2023 Nov 8;23(21):9995-10003 [PMID: 37857332]
  44. Protein Sci. 2019 Nov;28(11):1947-1951 [PMID: 31441146]
  45. Front Microbiol. 2017 Jul 11;8:1290 [PMID: 28744275]
  46. Biochim Biophys Acta Gen Subj. 2019 May;1863(5):849-856 [PMID: 30802593]
  47. Front Microbiol. 2021 May 12;12:676458 [PMID: 34054785]
  48. PLoS One. 2016 Jun 29;11(6):e0158311 [PMID: 27355584]
  49. Front Microbiol. 2023 Jul 03;14:1134207 [PMID: 37465024]
  50. ACS Infect Dis. 2023 Oct 13;9(10):1949-1963 [PMID: 37646612]
  51. Front Microbiol. 2021 Sep 13;12:688772 [PMID: 34589063]
  52. Biomaterials. 2020 Dec;262:120341 [PMID: 32911255]
  53. Front Pharmacol. 2018 Dec 10;9:1418 [PMID: 30618736]

Word Cloud

Created with Highcharts 10.0.0TFBZMRSAbiofilmbiofilmsbenzimidazolederivative=cellinfectionsformationhighfluorinatedantibacterialefficacytoward8 μg/mLbacterialtherapeuticeradicationmethicillin-resistantMethicillin-resistantmajorinducementnosocomialrendertoleranceconventionalantibioticshighlightsrequirementdevelopnewantimicrobialagentsurgentlystudyidentifiedpotentplanktonicMIC4 μg/mLMBCpersistent≥99%MBECmanifestedsignificantirreversibletime-dependentkillingcharacterizeddiminishedviabilitymorphologicalchangeproteinleakageFurthermoreresultsCBDdevicescrystalvioletassayconjunctionlive/deadstainingscanningelectronmicroscopyconfirmedcapableeradicatingpreformedefficiencySimultaneouslyreducedinvasivenessexertednegligiblehemolysiscytotoxicitymammaliancellsensuringrobusteffectmouseskinabscessmodeltranscriptomeprofilingquantitativeRT-PCRrevealedsetencodinggenesassociatedadhesiontranslationprocesswallbiosynthesisconsistentlydownregulateduponexposureconclusionholdspromisevaluablecandidateapplicationschronicBactericidalStaphylococcusaureus

Similar Articles

Cited By (1)