A delayed and unsynchronized ovary development as revealed by transcriptome of brain and pituitary of .

Ziyan Yu, Zongshuai Gao, Yun Zeng, Mingyou Li, Gangchun Xu, Mingchun Ren, Yunxia Zhu, Dong Liu
Author Information
  1. Ziyan Yu: Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
  2. Zongshuai Gao: Department of Transfusion Medicine, Shanghai Sixth People's Hospital Afffiliated to Shanghai Jiao Tong University School of Medicinel, Shanghai, China.
  3. Yun Zeng: Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
  4. Mingyou Li: Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
  5. Gangchun Xu: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.
  6. Mingchun Ren: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.
  7. Yunxia Zhu: Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
  8. Dong Liu: Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.

Abstract

Coilia nasus is an anadromous fish that has been successfully domesticated in the last decade due to its high economic value. The fish exhibits a delayed ovary development during the reproductive season, despite breeding and selection for five to six offspring. The molecular mechanism of the delayed ovary development is still unknown, so the obstacles have not been removed in the large-scale breeding program. This study aims to investigate the key genes regulating ovarian development by comparing the transcriptomes of ovarian-stage IV and stage II brain/pituitary of . Ovarian stages were validated by histological sections. A total of 75,097,641 and 66,735,592 high-quality reads were obtained from brain and pituitary transcriptomes, respectively, and alternatively spliced transcripts associated with gonadal development were detected. Compared to ovarian Ⅱ- brain, 515 differentially expressed genes (DEGs) were upregulated and 535 DEGs were downregulated in ovarian Ⅳ- brain, whereas 470 DEGs were upregulated and 483 DEGs were downregulated in ovarian Ⅳ- pituitary compared to ovarian Ⅱ- pituitary. DEGs involved in hormone synthesis and secretion and in the GnRH signaling pathway were screened. Weighted gene co-expression network analysis identified gene co-expression modules that were positively correlated with ovarian phenotypic traits. The hub genes Smad4 and TRPC4 in the modules were co-expressed with DEGs including Kiss1 receptor and JUNB, suggesting that ovarian development is controlled by a hypothalamic-pituitary-gonadal axis. Our results have provided new insights that advance our understanding of the molecular mechanism of reproductive functions and will be useful for future breeding.

Keywords

References

  1. Nature. 1990 Jul 19;346(6281):240-4 [PMID: 1695712]
  2. Sci Rep. 2016 Aug 22;6:31835 [PMID: 27545088]
  3. EXS. 2001;(91):177-201 [PMID: 11301598]
  4. BMC Evol Biol. 2019 Feb 18;19(1):57 [PMID: 30777013]
  5. Biology (Basel). 2023 Aug 28;12(9): [PMID: 37759575]
  6. Genomics. 2020 Jan;112(1):55-64 [PMID: 31404627]
  7. Comp Biochem Physiol Part D Genomics Proteomics. 2016 Jun;18:54-61 [PMID: 27089517]
  8. Psychoneuroendocrinology. 2007 Sep-Nov;32(8-10):1062-78 [PMID: 17928160]
  9. Mar Genomics. 2015 Jun;21:17-9 [PMID: 25733195]
  10. Biomol Detect Quantif. 2017 Nov 22;14:19-28 [PMID: 29201647]
  11. Genome Biol Evol. 2021 Nov 5;13(11): [PMID: 34623422]
  12. Mol Biol Evol. 2021 Apr 13;38(4):1317-1329 [PMID: 33146383]
  13. Endocrinology. 2013 Aug;154(8):2772-83 [PMID: 23744639]
  14. Int J Mol Sci. 2021 Jun 17;22(12): [PMID: 34204216]
  15. Endocrinology. 2020 Jul 1;161(7): [PMID: 32422656]
  16. Genomics. 2020 Sep;112(5):3294-3305 [PMID: 32540494]
  17. Nat Ecol Evol. 2018 Feb;2(2):343-351 [PMID: 29335574]
  18. Genetics. 2022 Mar 3;220(3): [PMID: 35100374]
  19. Comp Biochem Physiol Part D Genomics Proteomics. 2023 Sep;47:101115 [PMID: 37579624]
  20. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  21. Sex Dev. 2009;3(2-3):152-63 [PMID: 19684459]
  22. Bio Protoc. 2022 Feb 05;12(3):e4309 [PMID: 35284606]
  23. Neuroscience. 2013 Jun 3;239:271-9 [PMID: 23380505]
  24. Curr Drug Metab. 2022;23(3):172-187 [PMID: 35366770]
  25. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  26. Gene. 2017 Dec 30;637:203-210 [PMID: 28962924]
  27. Reprod Nutr Dev. 2005 May-Jun;45(3):261-79 [PMID: 15982453]
  28. Cell Calcium. 2017 Nov;67:138-147 [PMID: 28522036]
  29. Int J Med Sci. 2022 Aug 15;19(9):1442-1450 [PMID: 36035370]
  30. Sci Data. 2023 Jun 6;10(1):360 [PMID: 37280262]
  31. J Steroid Biochem Mol Biol. 2008 Apr;109(3-5):323-30 [PMID: 18400489]
  32. BMC Genomics. 2023 Apr 6;24(1):183 [PMID: 37024792]
  33. J Exp Zool. 1998 Aug 1;281(5):373-99 [PMID: 9662826]
  34. Endocrinology. 2020 May 1;161(5): [PMID: 32191302]
  35. F1000Res. 2020 Apr 28;9:304 [PMID: 32489650]
  36. Sci China Life Sci. 2020 Jun;63(6):849-865 [PMID: 32291558]
  37. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  38. Gen Comp Endocrinol. 2022 Sep 15;326:114066 [PMID: 35644279]
  39. Endocrinology. 2018 Nov 1;159(11):3860-3873 [PMID: 30277501]
  40. Front Genet. 2020 Nov 12;11:563947 [PMID: 33281869]
  41. Sex Dev. 2013;7(6):308-15 [PMID: 23988442]
  42. Sex Dev. 2021;15(1-3):80-92 [PMID: 33951664]
  43. Int J Gynaecol Obstet. 1992 Sep;39(1):3-9 [PMID: 1385228]
  44. FASEB J. 2014 Aug;28(8):3396-410 [PMID: 24739304]
  45. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  46. Aquat Toxicol. 2013 Jun 15;134-135:104-11 [PMID: 23603146]
  47. Endocrinology. 2014 Aug;155(8):3088-97 [PMID: 24885574]
  48. Int J Biol Macromol. 2021 Jul 31;183:490-501 [PMID: 33957197]
  49. Evolution. 1995 Oct;49(5):827-835 [PMID: 28564866]
  50. Gen Comp Endocrinol. 2019 Dec 1;284:113075 [PMID: 30500374]
  51. BMC Genomics. 2014 Jul 04;15:558 [PMID: 24996224]
  52. Genomics. 2022 Jan;114(1):266-277 [PMID: 34933072]
  53. Gigascience. 2020 Jan 1;9(1): [PMID: 31895412]
  54. Biology (Basel). 2022 Jul 13;11(7): [PMID: 36101428]

Word Cloud

Created with Highcharts 10.0.0ovariandevelopmentDEGspituitarybraindelayedovarybreedinggenesgeneco-expressionCoilianasusfishreproductivemolecularmechanismtranscriptomesⅡ-upregulateddownregulatedⅣ-analysismodulesanadromoussuccessfullydomesticatedlastdecadeduehigheconomicvalueexhibitsseasondespiteselectionfivesixoffspringstillunknownobstaclesremovedlarge-scaleprogramstudyaimsinvestigatekeyregulatingcomparingovarian-stageIVstageIIbrain/pituitaryOvarianstagesvalidatedhistologicalsectionstotal7509764166735592high-qualityreadsobtainedrespectivelyalternativelysplicedtranscriptsassociatedgonadaldetectedCompared515differentiallyexpressed535whereas470483comparedinvolvedhormonesynthesissecretionGnRHsignalingpathwayscreenedWeightednetworkidentifiedpositivelycorrelatedphenotypictraitshubSmad4TRPC4co-expressedincludingKiss1receptorJUNBsuggestingcontrolledhypothalamic-pituitary-gonadalaxisresultsprovidednewinsightsadvanceunderstandingfunctionswillusefulfutureunsynchronizedrevealedtranscriptomeRNA-seqgonadweighted

Similar Articles

Cited By

No available data.