Application and perspective of CRISPR/Cas9 genome editing technology in human diseases modeling and gene therapy.

Man-Ling Zhang, Hong-Bin Li, Yong Jin
Author Information
  1. Man-Ling Zhang: Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
  2. Hong-Bin Li: Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
  3. Yong Jin: Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.

Abstract

The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) mediated Cas9 nuclease system has been extensively used for genome editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology holds great potential for various applications, including the correction of genetic defects or mutations within the human genome. The application of CRISPR/Cas9 genome editing system in human disease research is anticipated to solve a multitude of intricate molecular biology challenges encountered in life science research. Here, we review the fundamental principles underlying CRISPR/Cas9 technology and its recent application in neurodegenerative diseases, cardiovascular diseases, autoimmune related diseases, and cancer, focusing on the disease modeling and gene therapy potential of CRISPR/Cas9 in these diseases. Finally, we provide an overview of the limitations and future prospects associated with employing CRISPR/Cas9 technology for diseases study and treatment.

Keywords

References

  1. Sci Rep. 2016 Feb 09;6:20620 [PMID: 26857844]
  2. Nature. 2017 Jul 13;547(7662):173-178 [PMID: 28658209]
  3. J Adv Res. 2022 Sep;40:207-221 [PMID: 36100328]
  4. Cells. 2020 Nov 21;9(11): [PMID: 33233344]
  5. Front Immunol. 2021 Jan 08;11:607442 [PMID: 33488612]
  6. Front Cell Dev Biol. 2020 Sep 22;8:576592 [PMID: 33072759]
  7. Cell. 2017 Mar 23;169(1):72-84.e13 [PMID: 28340352]
  8. Nat Mater. 2021 Nov;20(11):1469-1479 [PMID: 34226688]
  9. Mol Ther. 2017 Feb 01;25(2):342-355 [PMID: 28153087]
  10. J Zhejiang Univ Sci B. 2021 Apr 15;22(4):253-284 [PMID: 33835761]
  11. Nat Med. 2019 Mar;25(3):427-432 [PMID: 30778238]
  12. Nature. 2019 Apr;568(7753):561-565 [PMID: 30944467]
  13. Nat Rev Neurol. 2020 Oct;16(10):529-546 [PMID: 32796930]
  14. Stem Cell Res. 2017 Oct;24:44-50 [PMID: 28826027]
  15. Cold Spring Harb Perspect Biol. 2017 Jul 5;9(7): [PMID: 28062563]
  16. J Transl Med. 2022 Dec 9;20(1):579 [PMID: 36494846]
  17. Nat Med. 2001 Aug;7(8):899-905 [PMID: 11479621]
  18. J Immunol. 2021 Sep 15;207(6):1662-1671 [PMID: 34417261]
  19. Nat Biotechnol. 2017 Jun;35(6):569-576 [PMID: 28459449]
  20. Front Neurosci. 2021 Dec 21;15:803894 [PMID: 34992519]
  21. Transgenic Res. 2012 Dec;21(6):1341-8 [PMID: 22661126]
  22. Cell Death Dis. 2019 Aug 13;10(8):610 [PMID: 31406109]
  23. J Immunol. 2020 Mar 1;204(5):1091-1100 [PMID: 31988182]
  24. J Neurochem. 2009 Nov;111(3):696-702 [PMID: 19694908]
  25. Nature. 2014 Oct 16;514(7522):380-4 [PMID: 25119044]
  26. Ann Rheum Dis. 2019 Oct;78(10):1363-1370 [PMID: 31300459]
  27. Immunopharmacol Immunotoxicol. 2018 Jun;40(3):201-211 [PMID: 29473438]
  28. ACS Nano. 2011 Jan 25;5(1):209-16 [PMID: 21158414]
  29. Pediatr Res. 2019 Sep;86(3):311-315 [PMID: 31112992]
  30. Pflugers Arch. 2019 May;471(5):683-699 [PMID: 30706179]
  31. Biotechnol J. 2021 Feb;16(2):e2000150 [PMID: 32476279]
  32. Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):513-521 [PMID: 31871154]
  33. Nat Commun. 2022 Mar 08;13(1):1204 [PMID: 35260581]
  34. J Gene Med. 2019 Jul;21(7):e3107 [PMID: 31237055]
  35. CRISPR J. 2022 Feb;5(1):95-108 [PMID: 35191750]
  36. Front Neurosci. 2023 Jul 06;17:1223747 [PMID: 37483347]
  37. Biochem Biophys Res Commun. 2023 Jan 22;641:123-131 [PMID: 36527746]
  38. Clin Sci (Lond). 2019 Jan 22;133(2):225-238 [PMID: 30610007]
  39. Mol Neurodegener. 2020 Oct 19;15(1):60 [PMID: 33076948]
  40. PLoS One. 2019 Dec 10;14(12):e0225021 [PMID: 31821343]
  41. Hum Mol Genet. 2020 May 8;29(7):1068-1082 [PMID: 31625560]
  42. Mol Ther. 2017 May 03;25(5):1168-1186 [PMID: 28366764]
  43. Cell Rep. 2014 Nov 20;9(4):1219-27 [PMID: 25456124]
  44. Life Sci. 2020 Dec 15;263:118525 [PMID: 33031826]
  45. Nature. 2012 Feb 15;482(7385):331-8 [PMID: 22337052]
  46. Circulation. 2019 Jul 16;140(3):207-224 [PMID: 31163979]
  47. Nat Commun. 2019 Jan 3;10(1):53 [PMID: 30604771]
  48. Science. 2018 Aug 31;361(6405):866-869 [PMID: 30166482]
  49. Nat Biotechnol. 2014 Jun;32(6):569-76 [PMID: 24770325]
  50. Int J Mol Sci. 2022 Aug 05;23(15): [PMID: 35955847]
  51. Protein Cell. 2022 Jan;13(1):26-46 [PMID: 34800266]
  52. Inflammation. 2023 Aug;46(4):1575-1586 [PMID: 37227548]
  53. Trends Biotechnol. 2013 Jul;31(7):397-405 [PMID: 23664777]
  54. Nat Rev Cardiol. 2021 Jan;18(1):22-36 [PMID: 32895535]
  55. Diabetes. 2018 May;67(5):923-935 [PMID: 29472249]
  56. J Control Release. 2017 Nov 28;266:17-26 [PMID: 28911805]
  57. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 May;12(3):e1609 [PMID: 31797562]
  58. Sci Adv. 2020 Feb 12;6(7): [PMID: 32917636]
  59. Cell. 2019 Aug 22;178(5):1189-1204.e23 [PMID: 31442407]
  60. Methods Mol Biol. 2018;1780:97-120 [PMID: 29856016]
  61. Hepatology. 2019 Dec;70(6):2003-2017 [PMID: 30737831]
  62. Nat Med. 2020 Feb;26(2):207-214 [PMID: 31988462]
  63. Nat Biotechnol. 2020 Jul;38(7):824-844 [PMID: 32572269]
  64. Nat Genet. 2017 Jan;49(1):162-168 [PMID: 27918538]
  65. Asian J Pharm Sci. 2023 Nov;18(6):100854 [PMID: 38089835]
  66. Nat Commun. 2020 Mar 6;11(1):1223 [PMID: 32144253]
  67. Front Immunol. 2021 Mar 29;12:605930 [PMID: 33854495]
  68. BMC Biotechnol. 2015 May 22;15:33 [PMID: 25997509]
  69. Nat Cell Biol. 2019 Dec;21(12):1468-1478 [PMID: 31792376]
  70. Alzheimers Dement (N Y). 2017 Aug 05;3(3):440-449 [PMID: 29067350]
  71. Cell Res. 2019 Apr;29(4):334-336 [PMID: 30770867]
  72. Stem Cell Res. 2018 Mar;27:21-24 [PMID: 29291512]
  73. Hum Mol Genet. 2010 May 15;19(10):1873-82 [PMID: 20154343]
  74. Annu Rev Biophys. 2017 May 22;46:505-529 [PMID: 28375731]
  75. Circ Res. 2017 Oct 27;121(10):1168-1181 [PMID: 28851809]
  76. Nat Biotechnol. 2014 Sep;32(9):941-6 [PMID: 24952903]
  77. Cancer Discov. 2021 Jun;11(6):1398-1410 [PMID: 33579786]
  78. Cell Biosci. 2021 Dec 21;11(1):218 [PMID: 34933675]
  79. Science. 2007 Mar 23;315(5819):1709-12 [PMID: 17379808]
  80. J Immunol. 2021 May 1;206(9):2029-2037 [PMID: 33846226]
  81. Sci Rep. 2019 Aug 1;9(1):11173 [PMID: 31371804]
  82. Nat Rev Cardiol. 2022 Jan;19(1):26-42 [PMID: 34272501]
  83. Neurosci Bull. 2021 Sep;37(9):1271-1288 [PMID: 34165772]
  84. Cell. 2016 Dec 15;167(7):1734-1749.e22 [PMID: 27984724]
  85. Biochem Biophys Res Commun. 2016 Nov 25;480(4):499-507 [PMID: 27955725]
  86. Front Immunol. 2018 May 07;9:964 [PMID: 29867946]
  87. Mol Ther Nucleic Acids. 2019 Mar 1;14:287-300 [PMID: 30654190]
  88. Mol Ther Nucleic Acids. 2015 Nov 17;4:e264 [PMID: 26575098]
  89. Mol Ther Nucleic Acids. 2019 Sep 6;17:829-839 [PMID: 31465962]
  90. Nat Biotechnol. 2017 Jun;35(6):543-550 [PMID: 28459452]
  91. Nat Rev Cardiol. 2019 Sep;16(9):519-537 [PMID: 31028357]
  92. BMC Med. 2020 Nov 19;18(1):343 [PMID: 33208172]
  93. J Huntingtons Dis. 2013;2(1):47-68 [PMID: 25063429]
  94. Nat Rev Drug Discov. 2020 Dec;19(12):839-859 [PMID: 33077937]
  95. PLoS One. 2019 Oct 24;14(10):e0217728 [PMID: 31647813]
  96. Sci Rep. 2018 Aug 20;8(1):12420 [PMID: 30127453]
  97. Front Cell Dev Biol. 2020 Oct 22;8:585879 [PMID: 33195237]
  98. Genes Dev. 2019 Dec 1;33(23-24):1718-1738 [PMID: 31727771]
  99. Nat Rev Cardiol. 2017 Jan;14(1):11-20 [PMID: 27609628]
  100. Sci Adv. 2019 Mar 06;5(3):eaav4324 [PMID: 30854433]
  101. Nat Cell Biol. 2020 Jun;22(6):740-750 [PMID: 32393889]
  102. Cell. 2013 Feb 28;152(5):1173-83 [PMID: 23452860]
  103. Nat Commun. 2020 Sep 2;11(1):4402 [PMID: 32879318]
  104. J Vis Exp. 2022 Aug 08;(186): [PMID: 35993750]
  105. Transl Oncol. 2016 Dec;9(6):498-504 [PMID: 27816686]
  106. PLoS One. 2015 Jul 30;10(7):e0133373 [PMID: 26225561]
  107. Circ Res. 2022 Jun 10;130(12):1827-1850 [PMID: 35679361]
  108. Nature. 2017 Sep 7;549(7670):111-115 [PMID: 28854172]
  109. Cell Res. 2020 Mar;30(3):276-278 [PMID: 31911671]
  110. Lab Invest. 2018 Jul;98(7):968-976 [PMID: 29748615]
  111. Life Sci. 2020 Oct 15;259:118165 [PMID: 32735884]
  112. Nucleic Acids Res. 2017 Jul 27;45(13):7897-7908 [PMID: 28575452]
  113. Sci Rep. 2013;3:2510 [PMID: 23974631]
  114. J Alzheimers Dis. 2020;75(1):45-60 [PMID: 32250299]
  115. Adv Drug Deliv Rev. 2021 Sep;176:113891 [PMID: 34324887]
  116. Nat Rev Genet. 2018 Dec;19(12):770-788 [PMID: 30323312]
  117. Nat Rev Mater. 2019 Nov;4:726-737 [PMID: 34094589]
  118. Stem Cell Reports. 2018 Nov 13;11(5):1226-1243 [PMID: 30392975]
  119. Acta Pharm Sin B. 2021 Aug;11(8):2150-2171 [PMID: 34522582]
  120. Cell. 2014 Oct 9;159(2):440-55 [PMID: 25263330]
  121. J Autoimmun. 2019 Jun;100:84-94 [PMID: 30872080]
  122. Nat Commun. 2020 May 22;11(1):2582 [PMID: 32444599]
  123. Lab Invest. 2020 Jul;100(7):974-985 [PMID: 32051532]
  124. Environ Health Perspect. 1999 Oct;107 Suppl 5:693-700 [PMID: 10502533]
  125. J Immunol. 2018 Oct 1;201(7):1907-1917 [PMID: 30127089]
  126. Mol Neurobiol. 2021 Oct;58(10):5112-5126 [PMID: 34250577]
  127. Nat Methods. 2014 Apr;11(4):399-402 [PMID: 24584192]
  128. Transgenic Res. 2013 Aug;22(4):709-23 [PMID: 23111619]
  129. Protein Cell. 2022 Oct;13(10):707-720 [PMID: 35334073]
  130. Mamm Genome. 2021 Jun;32(3):173-182 [PMID: 33843019]
  131. Front Immunol. 2019 Oct 21;10:2160 [PMID: 31695690]
  132. Nature. 2018 Jul;559(7714):405-409 [PMID: 29995861]
  133. Int J Mol Sci. 2022 Jan 25;23(3): [PMID: 35163260]
  134. Cell Rep. 2014 Nov 06;9(3):1151-62 [PMID: 25437567]
  135. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  136. Small. 2014 Feb 12;10(3):524-35 [PMID: 24106138]
  137. Nat Biotechnol. 2014 Jun;32(6):577-582 [PMID: 24770324]
  138. J Biol Chem. 2020 May 22;295(21):7235-7248 [PMID: 32273345]
  139. Nat Med. 2020 May;26(5):732-740 [PMID: 32341578]
  140. Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):2184-2190 [PMID: 29976770]
  141. Neuron. 2011 Feb 10;69(3):423-35 [PMID: 21315254]
  142. Dis Model Mech. 2019 Apr 25;12(4): [PMID: 31028078]
  143. Nat Biotechnol. 2015 May;33(5):538-42 [PMID: 25798939]
  144. Nature. 2016 Nov 09;539(7628):180-186 [PMID: 27830812]
  145. Nat Commun. 2017 Jul 10;8:15999 [PMID: 28691711]
  146. Science. 2014 Nov 28;346(6213):1258096 [PMID: 25430774]
  147. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  148. Nature. 2011 Mar 31;471(7340):602-7 [PMID: 21455174]
  149. Nat Metab. 2020 Sep;2(9):934-945 [PMID: 32719542]
  150. PLoS One. 2017 Jan 17;12(1):e0169931 [PMID: 28095454]
  151. Sci Rep. 2022 Dec 14;12(1):21576 [PMID: 36517654]
  152. Nat Biotechnol. 2020 Jul;38(7):845-855 [PMID: 32601435]
  153. Cell Mol Life Sci. 2015 Mar;72(6):1175-84 [PMID: 25274063]
  154. Cell. 2018 May 3;173(4):989-1002.e13 [PMID: 29606351]
  155. Nat Med. 2019 Feb;25(2):249-254 [PMID: 30692695]
  156. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  157. Nat Rev Dis Primers. 2015 Apr 23;1:15005 [PMID: 27188817]
  158. J Alzheimers Dis. 2018;62(2):571-578 [PMID: 29480201]
  159. Stem Cell Res Ther. 2018 Jul 18;9(1):198 [PMID: 30021624]
  160. BMC Immunol. 2023 Dec 8;24(1):51 [PMID: 38066482]
  161. Genome Med. 2019 Apr 16;11(1):21 [PMID: 30987660]
  162. Science. 2020 Feb 28;367(6481): [PMID: 32029687]
  163. Cell. 2013 Sep 12;154(6):1380-9 [PMID: 23992846]
  164. Science. 2018 Oct 5;362(6410):86-91 [PMID: 30166439]
  165. Nucleic Acids Res. 2013 Apr 1;41(6):3483-90 [PMID: 23408852]
  166. Diabetes. 2016 Aug;65(8):2134-8 [PMID: 27207523]
  167. Life Sci. 2019 Sep 1;232:116636 [PMID: 31295471]
  168. Nature. 2020 Jun;582(7812):416-420 [PMID: 32499641]
  169. Hypertension. 2020 Aug;76(2):523-532 [PMID: 32507041]
  170. Nat Genet. 2017 Jul;49(7):1152-1159 [PMID: 28530678]
  171. Mol Ther Nucleic Acids. 2018 Jun 1;11:429-440 [PMID: 29858078]

Word Cloud

Created with Highcharts 10.0.0diseasesCRISPR/Cas9genomegenetechnologyeditinghumanmodelingtherapysystempotentialapplicationdiseaseresearchneurodegenerativecardiovascularcancerClusteredRegularlyInterspacedShortPalindromicRepeatCRISPRmediatedCas9nucleaseextensivelyusedmodificationeukaryoticcellsholdsgreatvariousapplicationsincludingcorrectiongeneticdefectsmutationswithinanticipatedsolvemultitudeintricatemolecularbiologychallengesencounteredlifesciencereviewfundamentalprinciplesunderlyingrecentautoimmunerelatedfocusingFinallyprovideoverviewlimitationsfutureprospectsassociatedemployingstudytreatmentApplicationperspectiveautoimmune-related

Similar Articles

Cited By