Peptidome Profiling of Urine and Assessment of Its Antimicrobial Activity against Mastitis-Causing Pathogens.

Rohit Kumar, Nikunj Tyagi, Anju Nagpal, Jai Kumar Kaushik, Ashok Kumar Mohanty, Sudarshan Kumar
Author Information
  1. Rohit Kumar: Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India. ORCID
  2. Nikunj Tyagi: Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India. ORCID
  3. Anju Nagpal: Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
  4. Jai Kumar Kaushik: Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
  5. Ashok Kumar Mohanty: ICAR-Indian Veterinary Research Institute, Mukteshwar 263138, Uttarakhand, India.
  6. Sudarshan Kumar: Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India. ORCID

Abstract

Urinary proteins have been studied quite exhaustively in the past, however, the small sized peptides have remained neglected for a long time in dairy cattle. These peptides are the products of systemic protein turnover, which are excreted out of the body and hence can serve as an important biomarker for various pathophysiologies. These peptides in other species of bovine have been reported to possess several bioactive properties. To investigate the urinary peptides in buffalo and simultaneously their bioactivities, we generated a peptidome profile from the urine of Murrah Buffaloes (n = 10). Urine samples were processed using <10 kDa MWCO filter and filtrate obtained was used for peptide extraction using Solid Phase Extraction (SPE). The nLC-MS/MS of the aqueous phase from ten animals resulted in the identification of 8165 peptides originating from 6041 parent proteins. We further analyzed these peptide sequences to identify bioactive peptides and classify them into anti-cancerous, anti-hypertensive, anti-microbial, and anti-inflammatory groups with a special emphasis on antimicrobial properties. With this in mind, we simultaneously conducted experiments to evaluate the antimicrobial properties of urinary aqueous extract on three pathogenic bacterial strains: , , and . The urinary peptides observed in the study are the result of the activity of possibly 76 proteases. The GO of these proteases showed the significant enrichment of the antibacterial peptide production. The total urinary peptide showed antimicrobial activity against the aforementioned pathogenic bacterial strains with no significant inhibitory effects against a buffalo mammary epithelial cell line. Just like our previous study in cows, the present study suggests the prime role of the antimicrobial peptides in the maintenance of the sterility of the urinary tract in buffalo by virtue of their amino acid composition.

Keywords

References

  1. Proteomics Clin Appl. 2021 Jan;15(1):e2000029 [PMID: 32618437]
  2. Mediators Inflamm. 2015;2015:293053 [PMID: 26185359]
  3. Electrophoresis. 2013 Sep;34(17):2473-83 [PMID: 23784626]
  4. Lancet Healthy Longev. 2021 Nov;2(11):e690-e703 [PMID: 34766101]
  5. Nat Biotechnol. 2022 Jun;40(6):921-931 [PMID: 35241840]
  6. Arterioscler Thromb Vasc Biol. 2019 Oct;39(10):e210-e218 [PMID: 31553665]
  7. Nucleic Acids Res. 2015 Jan;43(Database issue):D956-62 [PMID: 25392419]
  8. J Proteomics. 2015 Sep 8;127(Pt A):193-201 [PMID: 26021477]
  9. BMC Bioinformatics. 2021 Jul 30;22(1):389 [PMID: 34330209]
  10. Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7 [PMID: 26467475]
  11. Clin Cancer Res. 2016 Aug 15;22(16):4077-86 [PMID: 27026199]
  12. Proteomics Clin Appl. 2018 Sep;12(5):e1700163 [PMID: 29611317]
  13. Mol Ther Oncolytics. 2019 Dec 10;16:7-19 [PMID: 31909181]
  14. Vet Sci. 2020 Dec 18;7(4): [PMID: 33352919]
  15. J Clin Invest. 2003 Jun;111(11):1643-5 [PMID: 12782665]
  16. Front Genet. 2019 Mar 05;10:129 [PMID: 30891059]
  17. Antibiotics (Basel). 2023 Jan 16;12(1): [PMID: 36671385]
  18. Cardiovasc Res. 2006 Feb 15;69(3):562-73 [PMID: 16405877]
  19. Proteomics. 2006 Dec;6(23):6326-53 [PMID: 17083142]
  20. Nat Commun. 2022 Oct 4;13(1):5856 [PMID: 36195597]
  21. Exp Ther Med. 2017 Jul;14(1):499-506 [PMID: 28672959]
  22. Neurourol Urodyn. 1998;17(2):135-45 [PMID: 9514146]
  23. J Am Soc Nephrol. 2019 Aug;30(8):1385-1397 [PMID: 31239387]
  24. J Proteomics. 2018 Jan 16;171:53-62 [PMID: 28254676]
  25. Expert Rev Clin Pharmacol. 2020 Apr;13(4):367-390 [PMID: 32357080]
  26. Pharmaceutics. 2020 Oct 31;12(11): [PMID: 33142753]
  27. PLoS One. 2014 Jan 30;9(1):e87731 [PMID: 24498182]
  28. Biochim Biophys Acta. 2012 Jul;1820(7):1062-72 [PMID: 22425533]
  29. J Proteome Res. 2007 Dec;6(12):4549-55 [PMID: 17970587]
  30. PLoS One. 2015 Mar 24;10(3):e0119490 [PMID: 25803302]
  31. FASEB J. 2017 Nov;31(11):4946-4958 [PMID: 28751526]
  32. PLoS One. 2012;7(2):e31712 [PMID: 22359618]
  33. IEEE/ACM Trans Comput Biol Bioinform. 2012 Sep-Oct;9(5):1535-8 [PMID: 22732690]
  34. Polymers (Basel). 2022 May 02;14(9): [PMID: 35567037]
  35. BMC Infect Dis. 2018 Jan 8;18(1):17 [PMID: 29310594]
  36. Sci Rep. 2016 Feb 25;6:21839 [PMID: 26912180]
  37. Kidney Int. 2011 Jul;80(2):174-80 [PMID: 21525852]
  38. Sci Rep. 2021 Jun 14;11(1):12427 [PMID: 34127704]
  39. EXCLI J. 2018 Jul 25;17:734-752 [PMID: 30190664]
  40. J Biol Chem. 2010 Mar 5;285(10):7493-504 [PMID: 20056603]
  41. Proteomics Clin Appl. 2008 Jul 10;2(7-8):964 [PMID: 20130789]
  42. J Am Soc Nephrol. 2006 Dec;17(12):3267-3272 [PMID: 37001006]
  43. PLoS One. 2015 May 27;10(5):e0126871 [PMID: 26017270]
  44. FASEB J. 2014 Sep;28(9):3919-29 [PMID: 24868009]
  45. Oncotarget. 2017 Oct 11;8(59):100908-100930 [PMID: 29246030]
  46. Adv Exp Med Biol. 1999;462:215-23; discussion 225-33 [PMID: 10599426]
  47. Immunol Res. 2016 Apr;64(2):594-603 [PMID: 26663017]
  48. J Allergy Clin Immunol. 2006 Jun;117(6):1328-35 [PMID: 16750994]
  49. Sci Rep. 2013;3:1607 [PMID: 23558316]
  50. J Leukoc Biol. 2006 Dec;80(6):1563-74 [PMID: 16943385]
  51. Int J Mol Sci. 2020 Feb 02;21(3): [PMID: 32024233]
  52. PLoS One. 2014 Aug 21;9(8):e104625 [PMID: 25144639]
  53. Amino Acids. 2017 Sep;49(9):1601-1610 [PMID: 28664269]
  54. ACS Omega. 2021 Jul 25;6(30):19846-19859 [PMID: 34368571]
  55. J Med Chem. 2013 May 9;56(9):3546-56 [PMID: 23594231]
  56. Mol Cell Proteomics. 2010 Nov;9(11):2424-37 [PMID: 20616184]
  57. Front Pharmacol. 2018 Mar 27;9:276 [PMID: 29636690]

Word Cloud

Created with Highcharts 10.0.0peptidesurinarypeptideantimicrobialbuffalobioactivepropertiesstudyproteasesproteinssimultaneouslyUrineusingaqueouspathogenicbacterialactivityshowedsignificantUrinarystudiedquiteexhaustivelypasthoweversmallsizedremainedneglectedlongtimedairycattleproductssystemicproteinturnoverexcretedbodyhencecanserveimportantbiomarkervariouspathophysiologiesspeciesbovinereportedpossessseveralinvestigatebioactivitiesgeneratedpeptidomeprofileurineMurrahBuffaloesn=10samplesprocessed<10kDaMWCOfilterfiltrateobtainedusedextractionSolidPhaseExtractionSPEnLC-MS/MSphasetenanimalsresultedidentification8165originating6041parentanalyzedsequencesidentifyclassifyanti-cancerousanti-hypertensiveanti-microbialanti-inflammatorygroupsspecialemphasismindconductedexperimentsevaluateextractthreestrains:observedresultpossibly76GOenrichmentantibacterialproductiontotalaforementionedstrainsinhibitoryeffectsmammaryepithelialcelllineJustlikepreviouscowspresentsuggestsprimerolemaintenancesterilitytractvirtueaminoacidcompositionPeptidomeProfilingAssessmentAntimicrobialActivityMastitis-CausingPathogensmassspectrometry

Similar Articles

Cited By