MPSTAN: Metapopulation-Based Spatio-Temporal Attention Network for Epidemic Forecasting.

Junkai Mao, Yuexing Han, Bing Wang
Author Information
  1. Junkai Mao: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China.
  2. Yuexing Han: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China.
  3. Bing Wang: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China. ORCID

Abstract

Accurate epidemic forecasting plays a vital role for governments to develop effective prevention measures for suppressing epidemics. Most of the present spatio-temporal models cannot provide a general framework for stable and accurate forecasting of epidemics with diverse evolutionary trends. Incorporating epidemiological domain knowledge ranging from single-patch to multi-patch into neural networks is expected to improve forecasting accuracy. However, relying solely on single-patch knowledge neglects inter-patch interactions, while constructing multi-patch knowledge is challenging without population mobility data. To address the aforementioned problems, we propose a novel hybrid model called metapopulation-based spatio-temporal attention network (MPSTAN). This model aims to improve the accuracy of epidemic forecasting by incorporating multi-patch epidemiological knowledge into a spatio-temporal model and adaptively defining inter-patch interactions. Moreover, we incorporate inter-patch epidemiological knowledge into both model construction and the loss function to help the model learn epidemic transmission dynamics. Extensive experiments conducted on two representative datasets with different epidemiological evolution trends demonstrate that our proposed model outperforms the baselines and provides more accurate and stable short- and long-term forecasting. We confirm the effectiveness of domain knowledge in the learning model and investigate the impact of different ways of integrating domain knowledge on forecasting. We observe that using domain knowledge in both model construction and the loss function leads to more efficient forecasting, and selecting appropriate domain knowledge can improve accuracy further.

Keywords

References

  1. IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):563-578 [PMID: 31380745]
  2. PLoS Comput Biol. 2012;8(10):e1002699 [PMID: 23093917]
  3. IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24 [PMID: 32217482]
  4. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  5. Chaos Solitons Fractals. 2020 Oct;139:110017 [PMID: 32572310]
  6. Results Phys. 2021 Feb;21:103746 [PMID: 33391984]
  7. Sci Rep. 2021 Feb 25;11(1):4725 [PMID: 33633275]
  8. J Biomed Inform. 2021 Oct;122:103894 [PMID: 34454080]
  9. Chaos Solitons Fractals. 2020 Nov;140:110212 [PMID: 32839642]
  10. Annu Rev Control. 2021;51:477-487 [PMID: 33623479]
  11. IEEE Trans Big Data. 2020 Oct 21;7(1):45-55 [PMID: 37981990]
  12. Best Pract Res Clin Anaesthesiol. 2021 Oct;35(3):293-306 [PMID: 34511220]
  13. IEEE J Biomed Health Inform. 2022 Feb;26(2):922-933 [PMID: 34197330]
  14. Sci Rep. 2020 Dec 31;10(1):22454 [PMID: 33384444]
  15. Data Brief. 2020 Feb 26;29:105340 [PMID: 32181302]
  16. J Am Med Inform Assoc. 2021 Mar 18;28(4):733-743 [PMID: 33486527]
  17. Chaos Solitons Fractals. 2020 Oct;139:110057 [PMID: 32834610]
  18. Chaos Solitons Fractals. 2020 Sep;138:109942 [PMID: 32834576]
  19. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  20. Chaos Solitons Fractals. 2020 Nov;140:110121 [PMID: 32834633]
  21. Results Phys. 2021 Aug;27:104509 [PMID: 34307005]
  22. Neurocomputing (Amst). 2022 Oct 28;511:142-154 [PMID: 36097509]
  23. Nonlinear Dyn. 2022;109(1):249-263 [PMID: 35079201]

Grants

  1. 52273228/National Natural Science Foundation of China
  2. 20ZR1419000/Natural Science Foundation of Shanghai, China
  3. 2021PE0AC02/Key Research 609 Project of Zhejiang Laboratory

Word Cloud

Created with Highcharts 10.0.0knowledgeforecastingmodelepidemicdomainepidemiologicalspatio-temporalmulti-patchimproveaccuracyinter-patchepidemicsstableaccuratetrendssingle-patchnetworksinteractionsattentionconstructionlossfunctiondifferentAccurateplaysvitalrolegovernmentsdevelopeffectivepreventionmeasuressuppressingpresentmodelsprovidegeneralframeworkdiverseevolutionaryIncorporatingrangingneuralexpectedHoweverrelyingsolelyneglectsconstructingchallengingwithoutpopulationmobilitydataaddressaforementionedproblemsproposenovelhybridcalledmetapopulation-basednetworkMPSTANaimsincorporatingadaptivelydefiningMoreoverincorporatehelplearntransmissiondynamicsExtensiveexperimentsconductedtworepresentativedatasetsevolutiondemonstrateproposedoutperformsbaselinesprovidesshort-long-termconfirmeffectivenesslearninginvestigateimpactwaysintegratingobserveusingleadsefficientselectingappropriatecanfurtherMPSTAN:Metapopulation-BasedSpatio-TemporalAttentionNetworkEpidemicForecastinggraphmetapopulationspatio���temporalfeatures

Similar Articles

Cited By