Salty chemical cocktails as water quality signatures: Longitudinal trends and breakpoints along different U.S. streams.

Sydney A Shelton, Sujay S Kaushal, Paul M Mayer, Ruth R Shatkay, Megan A Rippy, Stanley B Grant, Tammy A Newcomer-Johnson
Author Information
  1. Sydney A Shelton: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA; ORISE Fellow at Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA. Electronic address: sydneys8@umd.edu.
  2. Sujay S Kaushal: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA. Electronic address: skaushal@umd.edu.
  3. Paul M Mayer: Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA. Electronic address: mayer.paul@epa.gov.
  4. Ruth R Shatkay: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA. Electronic address: rshatkay@terpmail.umd.edu.
  5. Megan A Rippy: Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William St, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address: mrippy@vt.edu.
  6. Stanley B Grant: Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William St, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address: stanleyg@vt.edu.
  7. Tammy A Newcomer-Johnson: United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 Martin Luther King Dr W, Cincinnati, OH 45220, USA. Electronic address: newcomer-johnson.tammy@epa.gov.

Abstract

Along urban streams and rivers, various processes, including road salt application, sewage leaks, and weathering of the built environment, contribute to novel chemical cocktails made up of metals, salts, nutrients, and organic matter. In order to track the impacts of urbanization and management strategies on water quality, we conducted longitudinal stream synoptic (LSS) monitoring in nine watersheds in five major metropolitan areas of the U.S. During each LSS monitoring survey, 10-53 sites were sampled along the flowpath of streams as they flowed along rural to urban gradients. Results demonstrated that major ions derived from salts (Ca, Mg, Na, and K) and correlated elements (e.g. Sr, N, Cu) formed 'salty chemical cocktails' that increased along rural to urban flowpaths. Salty chemical cocktails explained 46.1% of the overall variability in geochemistry among streams and showed distinct typologies, trends, and transitions along flowpaths through metropolitan regions. Multiple linear regression predicted 62.9% of the variance in the salty chemical cocktails using the six following significant drivers (p < 0.05): percent urban land, wastewater treatment plant discharge, mean annual precipitation, percent silicic residual material, percent volcanic material, and percent carbonate residual material. Mean annual precipitation and percent urban area were the most important in the regression, explaining 29.6% and 13.0% of the variance. Different pollution sources (wastewater, road salt, urban runoff) in streams were tracked downstream based on salty chemical cocktails. Streams flowing through stream-floodplain restoration projects and conservation areas with extensive riparian forest buffers did not show longitudinal increases in salty chemical cocktails, suggesting that there could be attenuation via conservation and restoration. Salinization represents a common urban water quality signature and longitudinal patterns of distinct chemical cocktails and ionic mixtures have the potential to track the sources, fate, and transport of different point and nonpoint pollution sources along streams across different regions.

Keywords

References

  1. Urban Ecosyst. 2022 Jun;25(3):879-907 [PMID: 35561157]
  2. Trends Ecol Evol. 2006 Apr;21(4):192-9 [PMID: 16701085]
  3. Earth Planets Space. 2017;69(1):156 [PMID: 32009834]
  4. Sci Total Environ. 2023 Sep 01;889:164138 [PMID: 37182763]
  5. Sci Total Environ. 2015 Mar 1;508:488-97 [PMID: 25514764]
  6. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4453-4458 [PMID: 28396392]
  7. Environ Sci Technol. 2022 Oct 4;56(19):13517-13527 [PMID: 36103712]
  8. Water (Basel). 2023 Nov 9;15(22):1-22 [PMID: 38313692]
  9. Environ Sci Technol. 2015 Oct 6;49(19):11264-80 [PMID: 26317612]
  10. J Environ Manage. 2002 Dec;66(4):377-93 [PMID: 12503494]
  11. Science. 2008 Feb 8;319(5864):756-60 [PMID: 18258902]
  12. Water Res. 2022 Jun 1;216:118283 [PMID: 35339052]
  13. Environ Sci Technol. 2017 Sep 5;51(17):9477-9487 [PMID: 28730814]
  14. Biogeochemistry. 2018;141(3):281-305 [PMID: 31427837]
  15. J Environ Monit. 2011 Feb;13(2):288-303 [PMID: 21116542]
  16. Appl Geochem. 2017 Aug 1;83:121-135 [PMID: 30220785]
  17. J Environ Manage. 2019 May 1;237:408-423 [PMID: 30822645]
  18. Front Environ Sci. 2023 Sep 22;11:1-20 [PMID: 37841559]
  19. Environ Sci Technol. 2019 Sep 3;53(17):10070-10081 [PMID: 31432661]
  20. Environ Sci Technol. 2017 Apr 18;51(8):4165-4172 [PMID: 28324648]
  21. Landsc Urban Plan. 2017 Jun;162:167-177 [PMID: 30220756]
  22. Environ Sci Technol. 2006 Jan 15;40(2):475-86 [PMID: 16468392]
  23. Environ Sci Technol. 2010 Oct 1;44(19):7376-82 [PMID: 20806974]
  24. Trends Ecol Evol. 2007 Dec;22(12):669-76 [PMID: 17981358]
  25. Environ Sci Pollut Res Int. 2017 Jul;24(20):17220-17240 [PMID: 28589273]
  26. J Water Pollut Control Fed. 1971 Apr;43(4):571-9 [PMID: 5550267]
  27. Environ Sci Technol. 2011 Oct 1;45(19):8225-32 [PMID: 21830824]
  28. Sci Total Environ. 2019 Mar 10;655:70-83 [PMID: 30469070]
  29. Environ Toxicol Chem. 2022 Nov;41(11):2782-2796 [PMID: 35975448]
  30. J Environ Qual. 2004 Jan-Feb;33(1):285-93 [PMID: 14964383]
  31. Nat Rev Earth Environ. 2023 Oct 31;4:770-784 [PMID: 38515734]
  32. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E574-E583 [PMID: 29311318]
  33. Environ Pollut. 2013 Feb;173:157-67 [PMID: 23202646]
  34. Appl Geochem. 2020 Aug 1;119:1-104632 [PMID: 33746355]
  35. Proc Natl Acad Sci U S A. 2022 Mar 1;119(9): [PMID: 35193976]
  36. Int J Environ Res Public Health. 2018 Aug 15;15(8): [PMID: 30111737]
  37. J Environ Qual. 2013 Jul;42(4):1002-14 [PMID: 24216352]
  38. Environ Monit Assess. 2024 Apr 9;196(5):437 [PMID: 38592553]
  39. PLoS One. 2019 Feb 13;14(2):e0212011 [PMID: 30759149]
  40. Environ Sci Technol. 2002 Mar 15;36(6):1202-11 [PMID: 11944670]
  41. Front Environ Sci. 2023 Apr 4;11:1-20 [PMID: 37234950]
  42. Environ Sci Technol. 2003 Oct 15;37(20):4702-8 [PMID: 14594381]
  43. Limnol Oceanogr Lett. 2023 Feb 1;8(1):190-211 [PMID: 37539375]
  44. Nat Commun. 2021 Jul 9;12(1):4232 [PMID: 34244500]
  45. Freshw Sci. 2022 Sep 1;41(3):420-441 [PMID: 36213200]
  46. Environ Sci Technol. 2020 Jan 21;54(2):778-789 [PMID: 31845802]
  47. Environ Sci Technol. 2015 Mar 3;49(5):2724-32 [PMID: 25660388]
  48. Sci Total Environ. 2018 Feb 1;613-614:1498-1509 [PMID: 28797521]
  49. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13517-20 [PMID: 16157871]
  50. Sci Total Environ. 2021 Jun 15;773:145062 [PMID: 33940714]
  51. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509916]
  52. Front Environ Sci. 2023 Jun 9;11:1-28 [PMID: 37475839]
  53. Environ Pollut. 2008 Mar;152(1):20-31 [PMID: 17640786]
  54. Environ Res Lett. 2021 Mar 1;16(3):035017-35017 [PMID: 34017359]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0chemicalurbancocktailsstreamsalongpercentqualitywaterlongitudinalsaltymaterialsourcesdifferentroadsaltsaltstrackstreamsynopticLSSmonitoringmajormetropolitanareasUSruralflowpathsSaltydistincttrendsregionsregressionvariancewastewaterannualprecipitationresidualpollutionrestorationconservationLongitudinalAlongriversvariousprocessesincludingapplicationsewageleaksweatheringbuiltenvironmentcontributenovelmademetalsnutrientsorganicmatterorderimpactsurbanizationmanagementstrategiesconductedninewatershedsfivesurvey10-53sitessampledflowpathflowedgradientsResultsdemonstratedionsderivedCaMgNaKcorrelatedelementsegSrNCuformed'saltycocktails'increasedexplained461%overallvariabilitygeochemistryamongshowedtypologiestransitionsMultiplelinearpredicted629%usingsixfollowingsignificantdriversp < 005:landtreatmentplantdischargemeansilicicvolcaniccarbonateMeanareaimportantexplaining296%130%DifferentrunofftrackeddownstreambasedStreamsflowingstream-floodplainprojectsextensiveriparianforestbuffersshowincreasessuggestingattenuationviaSalinizationrepresentscommonsignaturepatternsionicmixturespotentialfatetransportpointnonpointacrosssignatures:breakpointsChemicalcocktailHydrologySaltUrbanizationWater

Similar Articles

Cited By