Direct Current Stimulation over the Primary Motor Cortex, Cerebellum, and Spinal Cord to Modulate Balance Performance: A Randomized Placebo-Controlled Trial.

Jitka Veldema, Teni Steingr��ber, Leon von Gr��nheim, Jana Wienecke, Rieke Regel, Thomas Schack, Christoph Sch��tz
Author Information
  1. Jitka Veldema: Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany.
  2. Teni Steingr��ber: Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany. ORCID
  3. Leon von Gr��nheim: Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany.
  4. Jana Wienecke: Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany.
  5. Rieke Regel: Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany.
  6. Thomas Schack: Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany.
  7. Christoph Sch��tz: Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany.

Abstract

OBJECTIVES: Existing applications of non-invasive brain stimulation in the modulation of balance ability are focused on the primary motor cortex (M1). It is conceivable that other brain and spinal cord areas may be comparable or more promising targets in this regard. This study compares transcranial direct current stimulation (tDCS) over (i) the M1, (ii) the cerebellum, and (iii) trans-spinal direct current stimulation (tsDCS) in the modulation of balance ability.
METHODS: Forty-two sports students were randomized in this placebo-controlled study. Twenty minutes of anodal 1.5 mA t/tsDCS over (i) the M1, (ii) the cerebellum, and (iii) the spinal cord, as well as (iv) sham tDCS were applied to each subject. The Y Balance Test, Single Leg Landing Test, and Single Leg Squat Test were performed prior to and after each intervention.
RESULTS: The Y Balance Test showed significant improvement after real stimulation of each region compared to sham stimulation. While tsDCS supported the balance ability of both legs, M1 and cerebellar tDCS supported right leg stand only. No significant differences were found in the Single Leg Landing Test and the Single Leg Squat Test.
CONCLUSIONS: Our data encourage the application of DCS over the cerebellum and spinal cord (in addition to the M1 region) in supporting balance control. Future research should investigate and compare the effects of different stimulation protocols (anodal or cathodal direct current stimulation (DCS), alternating current stimulation (ACS), high-definition DCS/ACS, closed-loop ACS) over these regions in healthy people and examine the potential of these approaches in the neurorehabilitation.

Keywords

References

  1. Hum Mov Sci. 2018 Apr;58:140-147 [PMID: 29438911]
  2. Brain Topogr. 2003 Winter;16(2):95-9 [PMID: 14977202]
  3. Int J Sports Phys Ther. 2021 Oct 01;16(5):1190-1209 [PMID: 34631241]
  4. Clin Neurophysiol. 2023 Nov;155:44-54 [PMID: 37690391]
  5. Somatosens Mot Res. 2019 Jun;36(2):122-135 [PMID: 31181963]
  6. Brain Stimul. 2013 Jul;6(4):644-8 [PMID: 23149292]
  7. Nat Commun. 2019 Jul 24;10(1):3299 [PMID: 31341167]
  8. J Physiol. 2000 Sep 15;527 Pt 3:633-9 [PMID: 10990547]
  9. J Clin Neurosci. 2023 Jan;107:68-76 [PMID: 36516671]
  10. J Physiol. 2014 Aug 15;592(16):3345-69 [PMID: 24907311]
  11. J Biomech. 2018 Apr 11;71:264-270 [PMID: 29449001]
  12. J Sports Sci Med. 2018 May 14;17(2):174-180 [PMID: 29769817]
  13. Front Hum Neurosci. 2015 Feb 06;9:54 [PMID: 25705188]
  14. Front Hum Neurosci. 2014 Jun 26;8:371 [PMID: 25018712]
  15. J Phys Ther Sci. 2013 Jun;25(6):729-32 [PMID: 24259840]
  16. Acta Physiol (Oxf). 2008 Jun;193(2):101-16 [PMID: 18346210]
  17. Clin Neurophysiol. 2001 Jan;112(1):107-13 [PMID: 11137667]
  18. Gait Posture. 2019 Jun;71:245-252 [PMID: 31082657]
  19. Brain Stimul. 2015 Jul-Aug;8(4):823-30 [PMID: 25828427]
  20. Gait Posture. 2011 Feb;33(2):169-78 [PMID: 21211976]
  21. Front Neurol. 2021 Sep 06;12:695910 [PMID: 34552550]
  22. J Neural Eng. 2018 Jun;15(3):036008 [PMID: 29386408]
  23. Gait Posture. 2013 Jan;37(1):108-12 [PMID: 22832473]
  24. Sci Rep. 2017 Oct 9;7(1):12841 [PMID: 28993670]
  25. Nat Commun. 2018 Nov 30;9(1):5092 [PMID: 30504921]
  26. Brain Stimul. 2014 May-Jun;7(3):468-75 [PMID: 24630848]
  27. Biophys J. 2015 May 5;108(9):2137-47 [PMID: 25954872]
  28. IEEE Trans Neural Syst Rehabil Eng. 2010 Jun;18(3):263-73 [PMID: 20378480]
  29. J Parkinsons Dis. 2020;10(2):383-392 [PMID: 31929120]
  30. Neuroimage. 2006 Oct 1;32(4):1709-21 [PMID: 16859927]
  31. J Phys Ther Sci. 2017 Sep;29(9):1539-1542 [PMID: 28931983]
  32. Front Hum Neurosci. 2013 Jun 14;7:279 [PMID: 23785325]
  33. Clin Neurophysiol. 2016 Feb;127(2):1031-1048 [PMID: 26652115]
  34. Phys Ther. 2009 May;89(5):484-98 [PMID: 19329772]
  35. Clin Neurophysiol. 2001 Apr;112(4):720 [PMID: 11332408]
  36. J Neuroeng Rehabil. 2022 Aug 3;19(1):84 [PMID: 35922846]
  37. Front Hum Neurosci. 2017 Jan 31;11:16 [PMID: 28197085]
  38. Neuropsychologia. 2023 Jan 28;179:108463 [PMID: 36567006]
  39. Front Aging Neurosci. 2020 Sep 11;12:275 [PMID: 33024431]
  40. J Anat. 2007 Feb;210(2):232-6 [PMID: 17261142]
  41. Curr Biol. 2000 Mar 9;10(5):R176 [PMID: 10713861]
  42. Dose Response. 2017 Feb 09;15(1):1559325816685467 [PMID: 28210202]
  43. J Sport Rehabil. 2021 May 23;30(8):1242-1245 [PMID: 34030121]
  44. Neuroscience. 2023 Apr 15;516:125-140 [PMID: 36720301]
  45. Neurosci Biobehav Rev. 2020 Aug;115:351-362 [PMID: 32407735]
  46. Sci Rep. 2022 May 17;12(1):8189 [PMID: 35581211]
  47. Cerebellum. 2022 Dec;21(6):1092-1122 [PMID: 34813040]
  48. Neuroscience. 2021 May 10;462:288-302 [PMID: 33731315]
  49. J Chiropr Med. 2007 Sep;6(3):87-93 [PMID: 19674701]
  50. Front Neuroanat. 2015 Jul 15;9:89 [PMID: 26236199]
  51. Brain. 1977 Sep;100(3):527-42 [PMID: 589430]
  52. J Athl Train. 2020 May;55(5):488-493 [PMID: 32216655]
  53. PM R. 2010 Sep;2(9):835-41 [PMID: 20869683]
  54. Phys Med Biol. 2012 Apr 21;57(8):2137-50 [PMID: 22452936]
  55. Biomedicines. 2023 Apr 26;11(5): [PMID: 37238953]

Word Cloud

Created with Highcharts 10.0.0stimulationTestbalanceM1spinalcordcurrenttDCScerebellumSingleLegabilitydirecttsDCSBalancebrainmodulationprimarymotorcortexstudyiiiiianodalshamYLandingSquatsignificantregionsupportedDCScontrolACShealthypeopleOBJECTIVES:Existingapplicationsnon-invasivefocusedconceivableareasmaycomparablepromisingtargetsregardcomparestranscranialtrans-spinalMETHODS:Forty-twosportsstudentsrandomizedplacebo-controlledTwentyminutes15mAt/tsDCSwellivappliedsubjectperformedpriorinterventionRESULTS:showedimprovementrealcomparedlegscerebellarrightlegstanddifferencesfoundCONCLUSIONS:dataencourageapplicationadditionsupportingFutureresearchinvestigatecompareeffectsdifferentprotocolscathodalalternatinghigh-definitionDCS/ACSclosed-loopregionsexaminepotentialapproachesneurorehabilitationDirectCurrentStimulationPrimaryMotorCortexCerebellumSpinalCordModulatePerformance:RandomizedPlacebo-ControlledTrialpostural

Similar Articles

Cited By